Skip to main content
Log in

Static and dynamic characteristics of dual gate organic TFT based NAND and NOR circuits

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

This research paper analyzes the static and dynamic behavior of dual-gate organic thin film transistors (DG-OTFTs) based universal logic gates using the Atlas 2-D numerical device simulator. The electrical characteristics and performance parameters of pentacene based DG-OTFT is evaluated and verified with respect to the reported experimental results. The NAND and NOR logic gate circuits are realized using \(p\)-type designs in diode-load logic (DLL) and zero-\(V_{gs}\)-load logic (ZVLL). The results show that the logic functions in ZVLL configuration outperforms the DLL ones mainly in terms of noise margin, gain and voltage swing; however, there is a trade-off in terms of speed. The ZVLL NAND gate demonstrates an increment of 16 and 32 % in voltage swing and noise margin, respectively in comparison to the DLL one. Besides this, the gain also increases by 1.5 times in ZVLL mode. On the contrary, the DLL configuration demonstrates a significant reduction of 64 % in the propagation delay in comparison to the ZVLL. Similarly, NOR gate shows an increment of 24 and 30 % in voltage swing and noise margin, respectively under ZVLL configuration. However, the propagation delay for DLL NOR configuration is one-fourth of that of its ZVLL counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kim, Y.H., Moon, D.G., Han, J.I.: Organic TFT array on a paper substrate. IEEE Electron Device Lett. 25, 702–704 (2004)

    Article  Google Scholar 

  2. Moore, S.K.: Just one word–Plastics. IEEE Spectr. 39, 55–59 (2002)

    Article  Google Scholar 

  3. Klauk, H., Halik, M., Zschieschang, U., Eder, F., Schmid, G., Christine, D.: Pentacene organic transistors and ring oscillators on glass and on flexible polymeric substrates. Appl. Phys. Lett. 82, 4175–4177 (2003)

    Article  Google Scholar 

  4. Lee, J.B., Subramanian, V.: Organic transistors on fiber: a first step towards electronic textiles. In: Proceedings of the IEEE Technical Digest IEDM, pp. 8.3.1–8.3.4. IEEE (2003)

  5. Brianda, D., Opreab, A., Courbata, J., Barsanb, N.: Making environmental sensors on plastic foils. Mater. Today 14, 416–423 (2011)

    Article  Google Scholar 

  6. Takamiya, M., Sekitani, T., Kato, Y., Kawaguchi, H.: An organic FET SRAM with back gate to increase static noise margin and its application to braille sheet display. IEEE J. Solid-State Circuits 42, 93–100 (2007)

    Article  Google Scholar 

  7. Tobjork, D., Osterbacka, R.: Paper electronics. Adv. Mater. 23, 1935–1961 (2011)

    Article  Google Scholar 

  8. Cantatore, E., Geuns, T.C.T., Gelinck, G.H., Veenendaal, E.V., Gruijthuijsen, A.F.A., Schrijnemakers, L., Drews, S., De Leeuw, D.M.: A 13.56-MHz RFID system based on organic transponders. IEEE J. Solid-State Circuits 42, 84–92 (2007)

    Article  Google Scholar 

  9. Guerin, M., Daami, A., Jacob, S., Bergeret, E., Benevent, E., Pannier, P., Coppard, R.: High gain fully printed organic complementary circuits on flexible plastic foils. IEEE Trans. Electron Devices 58, 3587–3593 (2011)

    Article  Google Scholar 

  10. Mizukami, M., Hirohata, N., Iseki, T., Ohtawara, K., Tada, T., Yagyu, S., Abe, T., Suzuki, T., Fujisaki, Y., Inoue, Y., Tokito, S., Kurita, T.: Flexible AM-OLED panel driven by bottom contact OTFTs. IEEE Electron Device Lett. 27, 249–251 (2006)

    Article  Google Scholar 

  11. Guerin, M., Bergeret, E., Benevent, E., Daami, A., Pannier, P., Coppard, R.: Organic complementary logic circuits and volatile memories integrated on plastic foils. IEEE Trans. Electron Devices 60, 2045–2051 (2013)

    Article  Google Scholar 

  12. Shukla, D., Nelson, S.F., Freeman, D.C., Rajeswaran, M., Ahearn, M., Meyer, D.M., Carey, J.T.: Thin-film morphology control in naphthalene-diimide-based semiconductors: high mobility \(n\)-type semiconductor for organic thin-film transistors. Chem. Mater. 20, 7486–7491 (2008)

    Article  Google Scholar 

  13. See, K.C., Landis, C., Sarjeant, A., Katz, H.E.: Easily synthesized naphthalene tetracarboxylic diimide semiconductors with high electron mobility in air. Chem. Mater. 20, 3609–3616 (2008)

    Article  Google Scholar 

  14. Burgi, L., Richards, T.J., Friend, R.H., Sirringhaus, H.: Close look at charge carrier injection in polymer field effect transistors. J. Appl. Phys. 94, 6129–6137 (2003)

    Article  Google Scholar 

  15. Cui, T., Liang, G.: Dual gate pentacene organic field effect transistors based on a nanoassembled SiO\(_{2}\) nanoparticle thin film as the gate dielectric layer. Appl. Phys. Lett. 86, 064102-1–064102-3 (2005)

    Google Scholar 

  16. Koo, J.B., Ku, C.H., Lim, J.W., Kim, S.H.: Novel organic inverters with dual gate pentacene thin film transistor. Org. Electron. 8, 552–558 (2007)

    Article  Google Scholar 

  17. Kumar, B., Kaushik, B.K., Negi, Y.S., Goswami, V.: Single and dual gate OTFTs based robust organic digital design. Micro. Rel. 54, 100–109 (2013)

    Google Scholar 

  18. Luo, M.F.C., Chen, I., Genovese, F.C.: A thin film transistor for flat planel displays. IEEE Trans. Electron Devices 28, 740–743 (1981)

    Article  Google Scholar 

  19. Tuan, H.C., Thompson, M.J., Johnson, N.M., Lujan, R.A.: Dual gate a-Si:H thin film transistors. IEEE Electronic Device Lett. 3, 357–359 (1982)

    Article  Google Scholar 

  20. Kaneko, Y., Tsutsui, K., Tsukada, T.: Back bias effect on the current voltage characteristics of amorphous silicon thin film transistors. J. Non-Cryst. Solids 149, 264–268 (1992)

    Article  Google Scholar 

  21. Choi, J.H., Seo, H.S., Myoung, J.M.: Dual-Gate InGaZnO thin-film transistors with organic polymer as a dielectric layer. Solid State Lett. 12, H145–H148 (2009)

    Article  Google Scholar 

  22. Lim, W., Douglas, E.A., Lee, J., Jang, J., Craciun, V., Norton, D.P., Pearton, S.J., Ren, F., Son, S.Y., Yuh, J.H., Shen, H., Chang, W.: Transparent dual-gate InGaZnO thin film transistors: OR gate operation. J. Vac. Sci. Technol. B 27, 2128–2135 (2009)

    Article  Google Scholar 

  23. Atlas user’s manual: device simulation software. Santa Clara, Silvaco International (2012)

  24. Kim, J.B., Fuentes-Hernandez, C., Hwang, D.K., Tiwari, S.P., Potscavage Jr, W.J., Kippelen, B.: Vertically stacked complementary inverters with solution-processed organic semiconductors. Org. Electron. 12, 1132–1136 (2011)

    Article  Google Scholar 

  25. Shim, C.H., Maruoka, F., Hattori, R.: Structural analysis on organic thin-film transistor with device simulation. IEEE Trans. Electron Devices 57, 195–200 (2010)

    Article  Google Scholar 

  26. Gupta, D., Katiyar, M., Gupta, D.: An analysis of the difference in behavior of top and bottom contact organic field effect transistors using device simulation. Org. Electron. 10, 775–784 (2009)

    Article  Google Scholar 

  27. Spijkman, M.J., Myny, K., Smits, E.C.P., Heremans, P., Blom, P.W.M., De Leeuw, D.M.: Dual gate thin film transistors, integrated circuits and sensors. Adv. Mater. 23, 3231–3242 (2011)

    Article  Google Scholar 

  28. Spijkman, M., Smits, E.C.P., Blom, P.W.M., de Leeuw, D.M., Bon Saint Come, Y., Setayesh, S., Cantatore, E.: Increasing the noise margin in organic circuits using dual gate field-effect transistors. Appl. Phys. Lett. 92, 143304-1–143304-3 (2008)

    Article  Google Scholar 

  29. Ha, T.J., Sonar, P., Dodabalapur, A.: High mobility top-gate and dual gate polymer thin-film transistors based on diketopyrrolopyrrole-naphthalene copolymer. Appl. Phys. Lett. 98, 253305-1–253305-3 (2011)

  30. Maddalena, F., Spijkman, M., Brondijk, J.J., Fonteijn, P., Brouwer, F., Hummelen, J.C., De Leeuw, D.M., Blom, P.W.M., De Boer, B.: Device characteristics of polymer dual gate field effect transistors. Orga. Electron. 9, 839–846 (2008)

  31. Brown, A.R., Jarrett, C.P., de Leeuw, D.M., Matters, M.: Field effect transistors made from solution processed organic semiconductors. Sythetic Met. 88, 37–55 (1997)

    Article  Google Scholar 

  32. Dimitrakopoulos, C.D., Furman, B.K., Graham, T., Hedge, S., Purushothaman, S.: Field effect transistors comprising molecular beam deposited \(\alpha, \omega \)-di-hexyl-hexathienylene and polymeric insulator. Synth. Met. 92, 47–52 (1998)

    Article  Google Scholar 

  33. Puigdollers, J., Voz, C., Martin, I., Orpella, A., Vetter, M., Alcubilla, R.: Pentacene thin film transistors on polymeric gate dielectric: device fabrication and electrical characterization. J. Non-Cryst. Solids 338–340, 617–621 (2004)

  34. Raval, H.N., Tiwari, S.P., Navan, R.R., Mhaisalkar, S.G., Rao, V.R.: Solution processed bootstrapped organic inverters based on P3HT with a high-k gate dielectric material. IEEE Electron Device Lett. 30, 484–486 (2009)

    Article  Google Scholar 

  35. Wu, M., Alivov, Y.I., Morkoc, H.: High-\(k\) dielectrics and advanced channel concepts for Si MOSFET. J. Mater. Sci. Mater. Electron. 19, 915–951 (2008)

  36. Klauk, H., Zschieschang, U., Halik, M.: Low voltage organic thin film transistors with large transconductance. J. Appl. Phys. 102, 074514-1–074514-7 (2007)

    Article  Google Scholar 

  37. Jung, S., Choo, G.C., Ji, T.: Lift-off photolithographic top contact OTFTs using a bilayer of PVA and SU8. IEEE Electron Device Lett. 33, 603–605 (2012)

    Article  Google Scholar 

  38. Kumar, B., Kaushik, B.K., Negi, Y.S.: Organic thin film transistors: Structures, models, materials, fabrication and applications: a review. Polym. Rev. 54, 33–111 (2014)

    Article  Google Scholar 

  39. Kumar, B., Kaushik, B.K., Negi, Y.S.: Perspectives and challenges for organic thin film transistors: materials, devices, processes and applications. J. Mater. Sci. Mater. Electron. 25, 1–30 (2014)

    Google Scholar 

  40. Li, C., Pan, F., Wang, X., Wang, L., Wang, H., Wang, H., Yan, D.: Effect of the work function of gate electrode on hysteresis characteristics of organic thin film transistors with \(\text{ Ta }_{2}\text{ O }_{5}\)/ polymer as gate insulator. Org. Electron. 10, 948–953 (2009)

    Article  Google Scholar 

  41. Ha, T.J., Sonar, P., Dodabalapur, A.: Charge carrier velocity distributions in high mobility polymer dual gate thin film transistors. IEEE Electron Device Lett. 33, 899–901 (2012)

    Article  Google Scholar 

  42. Chen, H.C., Kung, C.P., Houng, W.G., Peng, Y.R., Hsien, Y.M., Chou, C.C., Kao, C.J., Yang, T.H., Hou, J.: Polymer inverter fabricated by inkjet printing and realized by transistors arrays on flexible substrates. J. Disp. Technol. 5, 216–223 (2009)

    Article  Google Scholar 

  43. Tiwari, S.P., Namdas, B., Rao, V.R., Fichou, D., Mhaisalkar, S.G.: Solution processed n-type organic field effect transistors with high on/off current ratios based on fullerene derivatives. IEEE Electron Device Lett. 28, 880–883 (2007)

    Article  Google Scholar 

  44. Ha, T.J., Sonar, P., Dodabalapur, A.: Solution-processed dual gate polymer field effect transistors for display applications. J. Disp. Tech. 9, 710–715 (2013)

    Article  Google Scholar 

  45. Resendiz, L., Estrada, M., Cerdeira, A., Cabrera, V.: Analysis of the performance of an inverter circuit: Varying the thickness of the active layer in polymer thin film transistors with circuit simulation. Jap. J. Appl. Phys. 51, 04DK04-1–04DK04-6 (2012)

    Google Scholar 

  46. Myny, K., Beenhakkers, M.J., Van Aerle, N.A.J.M., Gelinck, G.H., Genoe, J., Dehaene, W., Heremans, P.: Unipolar organic transistor circuits made robust by dual-gate technology. IEEE J. Solid-State Circuits 46, 1223–1230 (2011)

    Article  Google Scholar 

  47. Kang, S.M., Leblebici, Y.: CMOS Digital Integrated Circuits: Analysis and Design, 3rd edn. Tata McGraw-Hill, India (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brajesh Kumar Kaushik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Kaushik, B.K. & Negi, Y.S. Static and dynamic characteristics of dual gate organic TFT based NAND and NOR circuits . J Comput Electron 13, 627–638 (2014). https://doi.org/10.1007/s10825-014-0580-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0580-1

Keywords

Navigation