Skip to main content
Log in

Effects of acceptor dopants on the enhanced piezoelectric potential of ZnO nanowires: limiting free charge-carrier density through neutralizing donors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The piezoelectric potential of ZnO can be enhanced using acceptor dopants to neutralize the donor concentrations. In this study, unintentional n-type conductivity is assessed through modeling ZnO nanowires where the activation process of donors \((N_d^+)\) is given with a Fermi level \((E_F)\) close to the conduction band and followed by the introduction of an acceptor dopant \((N_a^-)\) in order to allow \(E_F\) to be within the optimum range of \(1\le E_F \le 3.2 \hbox { eV}\), which corresponds to the maximum piezoelectric potential calculated. The finite element method simulation reveals that the maximal range of ZnO piezoelectric potential can be obtained due to the intrinsic characteristics of the ZnO nanowire transformed using acceptor dopants, which implies that the limitations on the free-charge carriers (i.e. free-carrier depletion) could reduce the screening effects on the piezoelectric potential. Furthermore, the difference \({\vert }N_d^+ -N_a^- {\vert }\) is calculated to approach zero near the mid-gap and the energy band structure, which deviates from the normal flat line within the optimal range of \(1\le E_F \le 3.2 \hbox { eV}\) under the external stress imposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, Z.L., Song, J.H.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006)

    Article  Google Scholar 

  2. Wang, Z.L.: ZnO nanowire and nanoblet platform for nanotechnology. Mater. Sci. Eng. R 64, 33–71 (2009)

  3. Hu, Y., Zhang, Y., Xu, C., Lin, L., Snyder, R.L., Wang, Z.L.: Self-powered system with wireless data transmission. Nano Lett. 11, 2572–2577 (2011)

    Article  Google Scholar 

  4. Wang, Z.L.: Self-powered nanosensors and nanosystems. Adv. Mater. 24, 280–285 (2012)

    Article  Google Scholar 

  5. Gao, Y., Wang, Z.L.: Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9, 1103–1110 (2009)

    Article  Google Scholar 

  6. Romano, G., Mantini, G., Carlo, A.D., D’Amico, A., Falconi, C., Wang, Z.L.: Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology 22, 465401–465406 (2011)

    Article  Google Scholar 

  7. Kröger, F.A.: The Chemistry of Imperfect Crystals. North-Holland, Amsterdam (1974)

    Google Scholar 

  8. Look, D.C., Hemsky, J.W., Sizelove, J.R.: Residual native shallow donor in ZnO. Phys. Rev. Lett. 82, 2552–2555 (1999)

    Article  Google Scholar 

  9. Tomlins, G.W., Routbort, J.L., Mason, T.O.: Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide. J. Appl. Phys. 87, 117–123 (2000)

    Article  Google Scholar 

  10. Xu, S., Hansen, B.J., Wang, Z.L.: Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat. Commun. 1, 93–98 (2010)

    Article  Google Scholar 

  11. Hu, J., Suryavanshi, A.P., Yum, K., Yu, M.F., Wang, Z.Y.: Voltage generation from individual \(\text{ BaTiO }_{3}\) nanowires under periodic tensile mechanical load. Nano Lett. 7, 2966–2969 (2007)

    Article  Google Scholar 

  12. Cha, S.N., Kim, S.M., Kim, H.J., Ku, J.Y., Sohn, J.I., Park, Y.J., Song, B.G., Jung, M.H., Lee, E.K., Choi, B.L., Park, J.J., Wang, Z.L., Kim, J.M., Kim, K.: Porous PVDF as effective sonic wave driven nanogenerators. Nano Lett. 11, 5142–5147 (2011)

    Article  Google Scholar 

  13. Ming-Pei, L., et al.: Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223–1227 (2009)

    Article  Google Scholar 

  14. Piezoelectric ZnO Property is Supported by the Material Library in COMSOL Multiphysics Package v. 4.2(a)

  15. Kim, S.M., Kim, H., Nam, Y., Kim, S.: Effects of external surface charges on the enhanced piezoelectric potential of ZnO and AlN nanowires and nanotubes. AIP Adv. 2, 042174–042178 (2012)

    Article  Google Scholar 

  16. Sohn, J.I., Cha, S.N., Song, B.G., Lee, S., Kim, S.M., Ku, J., Kim, H.J., Park, Y.J., Choi, B.L., Wang, Z.L., Kim, J.M., Kim, K.: Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy Environ. Sci. 6, 97–104 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Computational Energy Harvesting (CEH) project in Samsung Advanced Institute of Technology. This research was supported by National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT & Future Planning (2009-0083540) and the Energy International Collaboration Research & Development Program of the Korea Institute of Energy Technology Evaluation and Planning funded by the Ministry of Knowledge Economy (2011-8520010050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.Y., Kim, SW., Kim, H. et al. Effects of acceptor dopants on the enhanced piezoelectric potential of ZnO nanowires: limiting free charge-carrier density through neutralizing donors. J Comput Electron 13, 606–612 (2014). https://doi.org/10.1007/s10825-014-0577-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0577-9

Keywords

Navigation