Skip to main content
Log in

Improving sequencing by tunneling with multiplexing and cross-correlations

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Sequencing by tunneling is a next-generation approach to read single-base information using electronic tunneling transverse to the single-stranded DNA (ssDNA) backbone while the latter is translocated through a narrow channel. The original idea considered a single pair of electrodes to read out the current and distinguish the bases [1, 2]. Here, we propose an improvement to the original sequencing by tunneling method, in which \(N\) pairs of electrodes are built in series along a synthetic nanochannel. While the ssDNA is forced through the channel using a longitudinal field it passes by each pair of electrodes for long enough time to gather a minimum of \(m\) tunneling current measurements, where \(m\) is determined by the level of sequencing error desired. Each current time series for each nucleobase is then cross-correlated together, from which the DNA bases can be distinguished. We show using random sampling of data from classical molecular dynamics, that indeed the sequencing error is significantly reduced as the number of pairs of electrodes, \(N\), increases. Compared to the sequencing ability of a single pair of electrodes, cross-correlating \(N\) pairs of electrodes exponentially improves this sequencing ability due to the approximate log-normal nature of the tunneling current probability distributions. We have also used the Fenton–Wilkinson approximation to analytically describe the mean and variance of the cross-correlations that are used to distinguish the DNA bases. The method we suggest is particularly useful when the measurement bandwidth is limited, allowing a smaller electrode gap residence time while still promising to consistently identify the DNA bases correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zwolak, M., Di Ventra, M.: Electronic signature of DNA nucleotides via transverse transport. Nano Lett. 5(3), 421–424 (2005)

    Article  Google Scholar 

  2. Lagerqvist, J., Zwolak, M., Di Ventra, M.: Fast DNA sequencing via transverse electronic transport. Nano Lett. 6, 779–782 (2006)

    Article  Google Scholar 

  3. Zwolak, M., Di Ventra, M.: Colloquium : physical approaches to DNA sequencing and detection. Rev. Mod. Phys. 80, 141–165 (Jan 2008)

  4. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al.: Real-time DNA sequencing from single polymerase molecules. Science 323(5910), 133–138 (2009)

    Article  Google Scholar 

  5. Rusk, N.: Torrents of sequence. Nat. Methods 8(1), 44–44 (2010)

    Google Scholar 

  6. Quail, M.A., Smith, M., Coupland, P., Otto, T.D., Harris, S.R., Connor, T.R., Bertoni, A., Swerdlow, H.P., Gu, Y.: A tale of three next generation sequencing platforms: comparison of ion torrent, Pacific Biosciences and Illumina Miseq sequencers. BMC Genomics 13(1), 341 (2012)

    Article  Google Scholar 

  7. Ohshiro, T., Matsubara, K., Tsutsui, M., Furuhashi, M., Taniguchi, M., and Kawai, T.: “Single-molecule electrical random resequencing of DNA and RNA”, Sci. Rep., vol. 2, 2012.

  8. Tsutsui, M., Shoji, K., Taniguchi, M., Kawai, T.: Formation and self-breaking mechanism of stable atom-sized junctions. Nano Lett. 8(1), 345–349 (2008)

    Article  Google Scholar 

  9. Tsutsui, M., Matsubara, K., Ohshiro, T., Furuhashi, M., Taniguchi, M., Kawai, T.: Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133(23), 9124–9128 (2011)

    Article  Google Scholar 

  10. Krems, M., Zwolak, M., Pershin, Y.V., Di Ventra, M.: Effect of noise on DNA sequencing via transverse electronic transport. Biophys. J. 97, 1990–1996 (2009)

    Article  Google Scholar 

  11. Murphy, M., Rasnik, I., Cheng, W., Lohman, T.M., Ha, T.: Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. Biophys. J. 86(4), 2530–2537 (2004)

    Article  Google Scholar 

  12. Tsutsui, M., Taniguchi, M., Yokota, K., Kawai, T.: Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5, 286–290 (2010)

    Article  Google Scholar 

  13. He, Y., Tsutsui, M., Fan, C., Taniguchi, M., Kawai, T.: Controlling DNA translocation through gate modulation of nanopore wall surface charges. ACS Nano 5(7), 5509–5518 (2011)

    Article  Google Scholar 

  14. Ahmed, T., Haraldsen, J., Rehr, J.J., Di Ventra, M., Schuller, I., and Balatsky, A.: Correlation dynamics and enhanced signals for identification of serial biomolecules and DNA bases. Nano. 25, 125705 (2014). doi:10.1088/0957-4484/25/12/125705

  15. Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., Golovchenko, J.: Graphene as a subnanometre trans-electrode membrane. Nature 467, 190–193 (2010)

    Article  Google Scholar 

  16. Huang, S., He, J., Chang, S., Zhang, P., Liang, F., Li, S., Tuchband, M., Fuhrmann, A., Ros, R., Lindsay, S.: Identifying single bases in a DNA oligomer with electron tunnelling. Nat. Nanotechnol. 5, 868–873 (2010)

    Article  Google Scholar 

  17. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005)

    Article  Google Scholar 

  18. Di Ventra, M.: Electrical Transport in Nanoscale Systems. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  19. Pecchia, A., Gheorghe, M., Di Carlo, A., Lugli, P., Niehaus, T.A., Frauenheim, T., Scholz, R.: Role of thermal vibrations in molecular wire conduction. Phys. Rev. B 68, 235321 (Dec 2003)

  20. Mitra, S., Mukhopadhyay, R., Tsukushi, I., Ikeda, S.: Dynamics of water in confined space (porous alumina): Qens study. J. Phys.: Condens. Matter 13, 8455 (2001)

    Google Scholar 

  21. Fenton, L.: The sum of log-normal probability distributions in scatter transmission systems. Commun. Sys. IRE Trans. 8(1), 57–67 (1960)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institutes of Health, US DOE, AFOSR Project No. FA 9550-10-1-0409, and ERC-DM-321031. A. V. Balatsky acknowledges useful conversations with T. Ahmed, J. Haraldsen, T. Kawai, and M. Taniguchi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Boynton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boynton, P., Balatsky, A.V., Schuller, I.K. et al. Improving sequencing by tunneling with multiplexing and cross-correlations. J Comput Electron 13, 794–800 (2014). https://doi.org/10.1007/s10825-014-0571-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0571-2

Keywords

Navigation