Skip to main content
Log in

An investigation of performance limits of conventional and tunneling graphene-based transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper we perform a simulation study on the limits of graphene-nanoribbon field-effect transistors (GNR-FETs) for post-CMOS digital applications. Both conventional and tunneling FET architectures are considered. Simulations of conventional narrow GNR-FETs confirm the high potential of these devices, but highlight at the same time OFF-state leakage problems due to various tunneling mechanisms, which become more severe as the width is made larger and require a careful device optimization. Such OFF-state problems are partially solved by the tunneling FETs, which allow subthreshold slopes better than 60 mV/dec, at the price of a reduced ON-current. The importance of a very good control on edge roughness is highlighted by means of a direct simulation of devices with non-ideal edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  Google Scholar 

  2. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006)

    Article  Google Scholar 

  3. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  4. Lemme, M.C., Echtermeyer, T.J., Baus, M., Kurz, H.: A graphene field-effect device. IEEE Electron Device Lett. 28, 282 (2007)

    Article  Google Scholar 

  5. Wang, X., Ouyang, Y., Li, X., Wang, H., Guo, J., Dai, H.: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008)

    Article  Google Scholar 

  6. Han, M.Y., Özyilmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  Google Scholar 

  7. Liang, G., Neophytou, N., Nikonov, D.E., Lundstrom, M.S.: Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans. Electron Devices 54, 677 (2007)

    Article  Google Scholar 

  8. Grassi, R., Poli, S., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Tight-binding and effective mass modeling of armchair graphene nanoribbon FETs. Solid-State Electron. 53, 462 (2009)

    Article  Google Scholar 

  9. Yoon, Y., Fiori, G., Hong, S., Iannaccone, G., Guo, J.: Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs. IEEE Trans. Electron Devices 55, 2314 (2008)

    Article  Google Scholar 

  10. Son, Y., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  Google Scholar 

  11. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  Google Scholar 

  12. Lake, R., Klimeck, G., Bowen, R.C., Jovanovic, D.: Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845 (1997)

    Article  Google Scholar 

  13. Boykin, T.B.: Generalized eigenproblem method for surface and interface states: The complex bands of GaAs and AlAs. Phys. Rev. B 54, 8107 (1996)

    Article  Google Scholar 

  14. Lin, Y.-M., Appenzeller, J., Knoch, J., Avouris, Ph.: High-performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans. Nanotechnol. 40, 481 (2005)

    Article  Google Scholar 

  15. Appenzeller, J., Lin, Y.-M., Knoch, J., Chen, Z., Avouris, P.: Comparing carbon nanotube transistors—The ideal choice: A novel tunneling device design. IEEE Trans. Electron Devices 52, 2568 (2005)

    Article  Google Scholar 

  16. Zaho, P., Chauhan, J., Guo, J.: Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett. 9, 684 (2009)

    Article  Google Scholar 

  17. Yoon, Y., Guo, J.: Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 91, 073103 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gnudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassi, R., Gnudi, A., Gnani, E. et al. An investigation of performance limits of conventional and tunneling graphene-based transistors. J Comput Electron 8, 441–450 (2009). https://doi.org/10.1007/s10825-009-0282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-009-0282-2

Keywords

Navigation