Skip to main content
Log in

Monte Carlo study of electron transport in strained silicon inversion layers

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The effect of degeneracy both on the phonon-limited mobility and the effective mobility including surface-roughness scattering in unstrained and biaxially tensile strained Si inversion layers is analyzed. We introduce a new method for the inclusion of the Pauli principle in a Monte Carlo algorithm. We show that incidentally degeneracy has a minor effect on the bulk effective mobility, despite non-degenerate statistics yields unphysical subband populations and an underestimation of the mean electron energy. The effective mobility of strained inversion layers slightly increases at high inversion layer concentrations when taking into account degenerate statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.-J. Huang, J. Chu, S. Goma, C. Emic, S. Koester, D. Canaperi, P. Mooney, S. Cordes, J. Speidell, R. Anderson, and H. Wong, in VLSI Symp. Tech. Dig., (2001), pp. 57–58.

  2. K. Rim, J. Chu, H. Chen, K. Jenkins, T. Kanarsky, K. Lee, A. Mocuta, H. Zhu, R. Roy, J. Newbury, J. Ott, K. Petrarca, P. Mooney, D. Lacey, S. Koester, K. Chan, D. Boyd, M. Ieong, and H. Wong, in VLSI Symp. Tech. Dig., (2002), pp. 98–99.

  3. N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, and S. Kimura, in Intl. Electron Devices Meeting, (2001), pp. 737–740.

  4. S.-E. Thompson, M. Armstrong, C. Auth, M. Alavi, and M. Buehler, IEEE Trans. Electron Devices, 51, 1790 (2004).

    Article  Google Scholar 

  5. M. V. Fischetti, F. Gamiz, and W. Hänsch, J. Appl. Phys., 92, 7320 (2002).

    Article  Google Scholar 

  6. J. Watling, L. Yang, M. Borici, R. C. Wilkins, A. Asenov, J. R. Barker, and S. Roy, Solid-State Electron., 48, 1337 (2004).

    Article  Google Scholar 

  7. T. Ando, A. Fowler, and F. Stern, Review of Modern Physics, 54, 437 (1982).

    Article  Google Scholar 

  8. S. Bosi and C. Jacoboni, J. Physics C, 9, 315 (1976).

    Article  Google Scholar 

  9. S. Yamakawa, H. Ueno, K. Taniguchi, C. Hamaguchi, K. Miyatsuji, K. Masaki, and U. Ravaioli, J. Appl. Phys., 79, 911 (1996).

    Article  Google Scholar 

  10. D. Roychoudhury and P. K. Basu, Physical Review, B, 22, 6325 (1980).

    Article  Google Scholar 

  11. M. V. Fischetti and Z. Ren, J. Appl. Phys., 94, 1079 (2003).

    Article  Google Scholar 

  12. D. Vasileska, and Z. Ren, SCHRED 2.0 User’s Manual, http://www.nanohub.org, (2000).

  13. C. Jungemann, A. Edmunds, and W. Engl, Solid-State Electron., 36, 1529 (1993).

    Article  Google Scholar 

  14. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, IEEE Trans. Electron Devices, 41, 2357 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ungersboeck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungersboeck, E., Kosina, H. Monte Carlo study of electron transport in strained silicon inversion layers. J Comput Electron 5, 79–83 (2006). https://doi.org/10.1007/s10825-006-8823-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-006-8823-4

Keywords

Navigation