Skip to main content
Log in

Computational approaches for predicting mutant protein stability

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Mutations in the protein affect not only the structure of protein, but also its function and stability. Prediction of mutant protein stability with accuracy is desired for uncovering the molecular aspects of diseases and design of novel proteins. Many advanced computational approaches have been developed over the years, to predict the stability and function of a mutated protein. These approaches based on structure, sequence features and combined features (both structure and sequence features) provide reasonably accurate estimation of the impact of amino acid substitution on stability and function of protein. Recently, consensus tools have been developed by incorporating many tools together, which provide single window results for comparison purpose. In this review, a useful guide for the selection of tools that can be employed in predicting mutated proteins’ stability and disease causing capability is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tokuriki N, Stricher F, Serrano L, Tawfik DS (2008) How protein stability and new functions trade off. PLoSComput Biol 4:e1000002

    Google Scholar 

  2. Luo P, Hayes RJ, Chan C, Stark DM, Hwang MY, Jacinto JM, Juvvadi P, Chung HS, Kundu A, Ary ML, Bassil I (2002) Dahiyat development of a cytokine analog with enhanced stability using computational ultrahigh throughput screening. Protein Sci 11:1218–1226

    Article  CAS  Google Scholar 

  3. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    Article  CAS  Google Scholar 

  4. Tokuriki N, Tawfik DS (2009) Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668–673

    Article  CAS  Google Scholar 

  5. Yue P, Li Z, Moult J (2005) Loss of protein structure stability as a major causative factor in monogenic disease. J Mol Biol 353:459–473

    Article  CAS  Google Scholar 

  6. Lehmann M, Wyss M (2001) Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr Opin Biotechnol 12:371–375

    Article  CAS  Google Scholar 

  7. Yang DF, Wei YT, Huang RB (2007) Computer-aided design of the stability of pyruvate formate-lyase from Escherichia coli by site-directed mutagenesis. Biosci Biotechnol Biochem 71:746–753

    Article  CAS  Google Scholar 

  8. Parthiban V, Gromiha MM, Schomburg D (2006) CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 34((Web Server issue)):W239–W242

    Article  CAS  Google Scholar 

  9. Foot E, Kleyn D, Foster PE (2010) Pharmacogenetics-pivotal to the future of the biopharmaceutical industry. Drug Discov Today 15:325–327

    Article  Google Scholar 

  10. Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    Article  CAS  Google Scholar 

  11. Pace CN (1990) Conformational stability of globular proteins. Trends Biochem Sci 15:14–17

    Article  CAS  Google Scholar 

  12. Ponnuswamy PK, Gromiha MM (1994) On the conformational stability of folded proteins. J Theor Biol 166:63–74

    Article  CAS  Google Scholar 

  13. Parthiban V, Gromiha MM, Hoppe C, Schomburg D (2007) Structural analysis and prediction of protein mutant stability using distance and torsion potentials: role of secondary structure and solvent accessibility. Proteins 66:41–52

    Article  CAS  Google Scholar 

  14. Bordner AJ, Abagyan RA (2004) Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations. Proteins 57:400–413

    Article  CAS  Google Scholar 

  15. Khatun J, Khare SD, Dokholyan NV (2004) Can contact potentials reliably predict stability of proteins? J Mol Biol 336:1223–1238

    Article  CAS  Google Scholar 

  16. Capriotti E, Fariselli P, Casadio R (2004) A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics 20:I63–I68

    Article  CAS  Google Scholar 

  17. Cheng JL, Randall A, Baldi P (2006) Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 62:1125–1132

    Article  CAS  Google Scholar 

  18. Huang LT, Saraboji K, Ho SY, Hwang SF, Ponnuswamy MN, Gromiha MM (2006) Prediction of protein mutant stability using classification and regression tool. Biophys Chem 125:462–470

    Article  Google Scholar 

  19. Saraboji K, Gromiha MM, Ponnuswamy MN (2005) Relative importance of secondary structure and solvent accessibility to the stability of protein mutants: a case study with amino acid properties and energetics on T4 and human lysozymes. Comput Biol Chem 29:25–35

    Article  CAS  Google Scholar 

  20. Saraboji K, Gromiha MM, Ponnuswamy MN (2006) Average assignment method for predicting the stability of protein mutants. Biopolymers 82:80–92

    Article  CAS  Google Scholar 

  21. Kamath U, De Jong K, Shehu A (2014) Effective automated feature construction and selection for classification of biological sequences. PLoS One 9:e99982

    Article  Google Scholar 

  22. Kawabata T, Ota M, Nishikawa K (1999) The protein mutant database. Nucleic Acids Res 27:355–357

    Article  CAS  Google Scholar 

  23. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    Article  CAS  Google Scholar 

  24. Fredman D, Siegfried M, Yuan YP, Bork P, Lehväslaiho H, Brookes AJ (2002) HGVbase: a human sequence variation database emphasizing data quality and a broad spectrum of data sources. Nucleic Acids Res 30:387–391

    Article  CAS  Google Scholar 

  25. Kumar MD, Bava KA, Gromiha MM, Parabakaran P, Kitajima K, Uedaira H, Sarai A (2006) ProTherm and ProNIT: thermodynamic databases for proteins and protein-nucleic acid interactions. Nuleic Acids Res 34:D204–D206

    Article  CAS  Google Scholar 

  26. Lee PH, Shatkay H (2008) F-SNP: computationally predicted functional SNPs for disease association studies. Nucleic Acids Res 36:D820–D824

    Article  CAS  Google Scholar 

  27. Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H (2013) Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet 132:1077–1130

    Article  CAS  Google Scholar 

  28. Liu X, Jian X, Boerwinkle E (2013) dbNSFP v2.0: a database of human non-synonymous SNPs and their functional predictions and annotations. Hum Mutat 34:E2393–E2402

    Article  CAS  Google Scholar 

  29. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok CY, Jia M, De J, Teague JW, Stratton MR, McDermott U, Campbell PJ (2014) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811

    Article  Google Scholar 

  30. UniProt Consortium (2015) UniProt: a hub for protein information. Nucl. Acids Res 43((Database issue)):D204–D212

    Article  Google Scholar 

  31. Shaw CA, Campbell IM (2015) Variant interpretation through Bayesian fusion of frequency and genomic knowledge. Genome Med 7:4

    Article  Google Scholar 

  32. Bava KA, Gromiha MM, Uedaira H, Kitajima K, Sarai A (2004) ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res 32:D120–D121

    Article  CAS  Google Scholar 

  33. Bao L, Zhou M, Cui Y (2005) nsSNPAnalyzer: identifying disease-associated nonsynonymous single nucleotide polymorphisms. Nucleic Acids Res 33:W480–W482

    Article  CAS  Google Scholar 

  34. Mi H, Lazareva-Ulitsky B, Loo R, Kejariwal A, Vandergriff J, Rabkin S, Guo N, Muruganujan A, Doremieux O, Campbell MJ, Kitano H, Thomas PD (2005) The PANTHER database of protein families, subfamilies, functions and pathways. Nucleic Acids Res 33:D284–D288

    Article  CAS  Google Scholar 

  35. Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22:2729–2734

    Article  CAS  Google Scholar 

  36. Yue P, Melamud E, Moult J (2006) SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinform 7:166

    Article  Google Scholar 

  37. Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV (2006) Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 34:1317–1325

    Article  CAS  Google Scholar 

  38. Huang LT, Gromiha MM, Ho SY, Ho SY (2007) Sequence analysis and rule development of predicting protein stability change upon mutation using decision tree model. J Mol Model 13:879–890

    Article  CAS  Google Scholar 

  39. Yin S, Ding F, Dokholyan NV (2007) Eris: an automated estimator of protein stability. Nat Methods 4:466–467

    Article  CAS  Google Scholar 

  40. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4:1073–1081

    Article  CAS  Google Scholar 

  41. Venselaar H, te BeekG TAH, Kuipers RKP, Hekkelman ML, Vriend G (2010) Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinform 11:548

    Article  Google Scholar 

  42. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249

    Article  CAS  Google Scholar 

  43. Masso M, Vaisman II (2011) A structure-based computational mutagenesis elucidates the spectrum of stability-activity relationships in proteins. Conf Proc IEEE Eng Med Biol Soc 2011:3225–3228

    Google Scholar 

  44. Masso M, Vaisman II (2014) AUTO-MUTE 2.0: a portable framework with enhanced capabilities for predicting protein functional consequences upon mutation. Adv Bioinform http://dx.doi.org/10.1155/2014/278385

  45. Reva B, Antipin Y, Sander C (2011) Predicting the functional impact of protein mutations: applications to cancer genomics. Nucleic Acids Res 39:e118

    Article  CAS  Google Scholar 

  46. Wainreb G, Wolf L, Ashkenazy H, Dehouck Y, Ben-Tal N (2011) Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site. Bioinformatics 27:3286–3292

    Article  CAS  Google Scholar 

  47. González-Pérez A, López-Bigas N (2011) Improving the assessment of the outcome of nonsynonymous SNPs with a consensus deleteriousness score, Condel. Am J Hum Genet 88:440–449

    Article  Google Scholar 

  48. Gonnelli G, Rooman M, Dehouck Y (2012) Structure-based mutant stability predictions on proteins of unknown structure. J Biotechnol 161:287–293

    Article  CAS  Google Scholar 

  49. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7:e46688

    Article  CAS  Google Scholar 

  50. Chen CW, Lin J, Chu YW (2013) iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinform 14(Suppl 2):S5

    Article  Google Scholar 

  51. Capriotti E, Altman RB, Bromberg Y (2013) Collective judgment predicts disease-associated single nucleotide variants, mutations in proteins. BMC Genom 14(suppl 3):S2

    Article  Google Scholar 

  52. Pires DEV, Ascher DV, Blundell TL (2014) DUET: a server for predicting effects of mutations on protein stability via an integrated computational approach. Nucleic Acids Res 42(W1):W314–W319

    Article  CAS  Google Scholar 

  53. Suplatov D, Shalaeva D, Kirilin E, Arzhanik V, Švedas V (2014) Bioinformatic analysis of protein families for identification of variable amino acid residues responsible for functional diversity. J Biomol Struct Dyn 32:75–87

    Article  CAS  Google Scholar 

  54. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  Google Scholar 

  55. Baets GD, Durme JV, Reumers J, Maurer-Stroh S, Vanhee P, Dopazo J, Schymkowitz J, Rousseau F (2012) SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res 40((Database issue)):D935–D939

    Article  Google Scholar 

  56. Han JH, Batey S, Nickson AA, Teichmann SA, Clarke J (2007) The folding and evolution of multidomain proteins. Nat Rev Mol Cell Biol 8:319–330

    Article  CAS  Google Scholar 

  57. Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on protein function. Annu Rev Genom Hum Genet 7:61–80

    Article  CAS  Google Scholar 

  58. Ng PC, Henikoff S (2002) Accounting for human polymorphisms predicted to affect protein function. Genom Res 12:436–446

    Article  CAS  Google Scholar 

  59. Flanagan SE, Patch AM, Ellard S (2010) Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet Test Mol Biomark 14:533–537

    Article  CAS  Google Scholar 

  60. Tian J, Wu N, Guo X, Guo J, Zhang J, Fan Y (2007) Predicting the phenotypic effects of non-synonymous single nucleotide polymorphisms based on support vector machines. BMC Bioinform 8:450

    Article  Google Scholar 

  61. Cheng G, Qian B, Samudrala R, Baker D (2005) Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design. Nucleic Acids Res 33:5861–5867

    Article  CAS  Google Scholar 

  62. Dehouck Y, Grosfils A, Folch B, Gilis D, Bogaerts P, Rooman M (2009) Fast and accurate predictions of protein stability changes upon mutations using statistical potentials and neural networks: PoPMuSiC-2.0. Bioinformatics 25:2537–2543

    Article  CAS  Google Scholar 

  63. Johnston MA, Sondergaard C, Nielsen JE (2011) Integrated prediction of the effect of mutations on multiple protein characteristics. Proteins 79:165–178

    Article  CAS  Google Scholar 

  64. Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucleic Acids Res 35:3823–3835

    Article  CAS  Google Scholar 

  65. Dehouck Y, Kwasigroch MJ, Gilis D, Rooman M (2011) PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinform 12:151

    Article  Google Scholar 

  66. Castellana S, Mazza T (2013) Congruency in the prediction of pathogenic missense mutations: state-of-the-art web-based tools. Brief Bioinform 14:448–459

    Article  CAS  Google Scholar 

  67. Kono TJY, Seth K, Poland JA, Morrell PL (2014) SNPMeta: SNP annotation and SNP metadata collection without a reference genome. Mol Ecol Resour 14:419–425

    Article  CAS  Google Scholar 

  68. Potapov V, Cohen M, Schreiber G (2009) Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Protein Eng Des Sel 22:553–560

    Article  CAS  Google Scholar 

  69. Topham CM, Srinivasan N, Blundell TL (1997) Prediction of protein mutants based on structural environment-dependent amino acid substitution and propensity tables. Protein Eng 10:7–21

    Article  CAS  Google Scholar 

  70. Folkman L, Stantic B, Sattar A (2013) Sequence-only evolutionary and predicted structural features for the prediction of stability changes in protein mutants. BMC Bioinform 14(Suppl 2):1

    Article  Google Scholar 

  71. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res 33((Web Server issue)):W306–W310

    Article  CAS  Google Scholar 

  72. Kumar S, Sanderford M, Gray VE (2012) Evolutionary diagnosis method for variants in personal exomes. Nat Methods 9:855–856

    Article  CAS  Google Scholar 

  73. Bendl J, Stourac J, Salanda O, Pavelka A, Wieben ED, Zendulka J, Brezovsky J, Damborsky J (2014) PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Comput Biol 10:e1003440

    Article  Google Scholar 

  74. Dunbrack RL Jr (2006) Sequence comparison and protein structure prediction. Curr Opin Struct Biol 16:374–384

    Article  CAS  Google Scholar 

  75. Giollo M, Martin AJM, Walsh I, Ferrari C, Tosatto SCE (2014) NeEMO: a method using residue interaction networks to improve prediction of protein stability upon mutation. BMC Genom 15(Suppl 4):S7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Kulshreshtha.

Ethics declarations

Conflict of interest

There is no conflict of interest with this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulshreshtha, S., Chaudhary, V., Goswami, G.K. et al. Computational approaches for predicting mutant protein stability. J Comput Aided Mol Des 30, 401–412 (2016). https://doi.org/10.1007/s10822-016-9914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9914-3

Keywords

Navigation