Skip to main content

Advertisement

Log in

Docking simulations suggest that all-trans retinoic acid could bind to retinoid X receptors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Retinoid X receptors (RXRs) are ligand-controlled transcription factors which heterodimerize with other nuclear receptors to regulate gene transcriptions associated with crucial biological events. 9-cis retinoic acid (9cRA), which transactivates RXRs, is believed to be an endogenous RXR ligand. All-trans retinoic acid (ATRA) is a natural ligand for retinoic acid receptors (RARs), which heterodimerize with RXRs. Although the concentration of 9cRA in tissues is very low, ATRA is relatively abundant and some reports show that ATRA activates RXRs. We computationally studied the possibility of ATRA binding to RXRs using two different docking methods with our developed programs to assess the binding affinities of naturally occurring retinoids. The simulations showed good correlations to the reported binding affinities of these molecules for RXRs and RARs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ATRA:

All-trans retinoic acid

9cRA:

9-cis retinoic acid

13cRA:

13-cis retinoic acid

RAR:

Retinoic acid receptor

RXR:

Retinoid X receptor

References

  1. Tsuji M (2014) Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily. J Struct Biol 185:355–365

    Article  CAS  Google Scholar 

  2. Huang R, Chandra V, Rastinejad F (2014) Retinoid acid actions through mammalian nuclear receptors. Chem Rev 114:233–254

    Article  CAS  Google Scholar 

  3. le Maire A, Álvarez S, Shankaranarayanan P, de Lera AR, Bourguet W, Gronemeyer H (2012) Retinoid receptors and therapeutic applications of RAR/RXR modulators. Curr Top Med Chem 12:505–527

    Article  Google Scholar 

  4. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, de Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H (2006) International union of pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 58:760–772

    Article  Google Scholar 

  5. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, de Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H (2006) International union of pharmacology. LX. Retinoic acid receptors. Pharmacol Rev 58:712–725

    Article  CAS  Google Scholar 

  6. Umemiya H, Fukasawa H, Ebisawa M, Eyrolles L, Kawachi E, Eisenmann G, Gronemeyer H, Hashimoto Y, Shudo K, Kagechika H (1997) Regulation of retinoidal actions by diazepinylbenzoic acids. Retinoid synergists which activate the RXR-RAR heterodimers. J Med Chem 40:4222–4234

    Article  CAS  Google Scholar 

  7. Mic DA, Molotkov A, Benbrook DM, Duester G (2003) Retinoid activation of retinoic acid receptor but not retinoid X receptor is sufficient to rescue lethal defect in retinoic acid synthesis. PNAS 100:7135–7140

    Article  CAS  Google Scholar 

  8. Radominska-Pandya A, Chen G (2002) Photoaffinity labeling of human retinoid X receptor (RXRβ) with 9-cis-retinoic acid: identification of phytanic acid, docosahexaenoic acid, and lithocholic acid as ligand for RXRβ. Biochemistry 41:4883–4890

    Article  CAS  Google Scholar 

  9. Lengqvis J, de Urquiza AM, Bergman AC, Willson TM, Sjövall J, Perlmann T, Griffiths WJ (2004) Polyunsaturated fatty acid including docosahexaenoic acid arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol Cell Proteomics 3:692–703

    Article  Google Scholar 

  10. Liu Y, Kagechika H, Ishikawa J, Hirano H, Matsukuma S, Tanaka K, Nakamura S (2008) Effects of retinoic acids on the dendritic morphology of cultured hippocampal neurons. J Neurochem 106:1104–1116

    Article  CAS  Google Scholar 

  11. Idres N, Marill J, Flexor MA, Chabot GG (2002) Activation of retinoic acid receptor-dependent transcription by all-trans-retinoic acid metabolites and isomers. J Biol Chem 277:31491–31498

    Article  CAS  Google Scholar 

  12. Camacho M, Rodriguez C, Salazar J, Martínez-González J, Ribalta J, Escudero JR, Masana L, Vila L (2008) Retinoic acid induces PGI synthase expression in human endothelial cells. J Lip Res 49:1707–1714

    Article  CAS  Google Scholar 

  13. Rühl R, Plum C, Elmazer MMA, Nau H (2001) Embryonic subcellular distribution of 13-cis- and all-trans-retinoic acid indicates differential cytosolic/nuclear localization. Toxicol Sci 63:82–89

    Article  Google Scholar 

  14. Tashima T, Kagechika H, Tsuji M, Fukasawa H, Kawachi E, Hashimoto Y, Shudo K (1997) Polyenylidene thiazolidine derivatives with retinoidal activities. Chem Pharm Bull 45:1805–1813

    Article  CAS  Google Scholar 

  15. Ohta K, Tsuji M, Kawachi E, Fukasawa H, Hashimoto Y, Shudo K, Kagechika H (1998) Potent retinoid synergists with a diphenylamine skeleton. Biol Pharm Bull 21:544–546

    Article  CAS  Google Scholar 

  16. Iijima T, Endo Y, Tsuji M, Kawachi E, Kagechika H, Shudo K (1999) Dicarba-closo-dodecaboranes as a pharmacophore. Retinoidal antagonists and potential agonists. Chem Pharm Bull 47:398–404

    Article  CAS  Google Scholar 

  17. Ebisawa M, Umemiya H, Ohta K, Fukasawa H, Kawachi E, Christoffel G, Gronemeyer H, Tsuji M, Hashimoto Y, Shudo K, Kagechika H (1999) Retinoid X receptor-antagonistic diazepinylbenzoic acids. Chem Pharm Bull 47:1778–1786

    Article  CAS  Google Scholar 

  18. Amano Y, Noguchi M, Shudo K (2014) Diarylamines incorporating hexahydrophenalene or octahydrobenzoheptalene as retinoid X receptor (RXR)-specific agonists. Chem Pharm Bull 62:254–259

    Article  CAS  Google Scholar 

  19. Amano Y, Noguchi M, Nakagomi M, Muratake H, Fukasawa H, Shudo K (2013) Design, synthesis and evaluation of retinoids with novel bulky hydrophobic partial structures. Bioorg Med Chem 21:4342–4350

    Article  CAS  Google Scholar 

  20. Tsuji M (2007) Development of the structure-based drug design system, HMHC and DSHC. Mol Sci 1 NP004

  21. Mangelsdorf DJ, Ong ES, Dyck JA, Evans RM (1990) Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345:224–229

    Article  CAS  Google Scholar 

  22. Allegretto EA, McClurg MR, Lazarchik SB, Clemm DL, Kerner SA, Elgort MG, Boehm MF, White SK, Pike JW, Heyman RA (1993) Transactivation properties of retinoic acid and retinoid X receptors in mammalian cells and yeast. Correlation with hormone binding and effects of metabolism. J Biol Chem 268:26625–26633

    CAS  Google Scholar 

  23. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM, Thaller C (1992) 9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406

    Article  CAS  Google Scholar 

  24. Kawamura K, Shiohara M, Kanda M, Fujiwara S (2013) Retinoid X receptor-mediated transdifferentiation cascade in budding tunicates. Dev Biol 384:343–355

    Article  CAS  Google Scholar 

  25. Mizuguchi Y, Wada A, Nakagawa K, Ito M, Okano T (2006) Antitumoral activity of 13-demethyl or 13-substituted analogues of all-trans retinoic acid and 9-cis retinoic acid in the human myeloid leukemia cell line HL-60. Biol Pharm Bull 29:1803–1809

    Article  CAS  Google Scholar 

  26. Schug TT, Berry DC, Shaw NS, Travis SN, Noy N (2007) Dual transcriptional activities underlie opposing effects of retinoic acid on cell survival. Cell 129:723–733

    Article  CAS  Google Scholar 

  27. Al Tanoury Z, Piskunov A, Rochette-Egly C (2013) Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54:1761–1775

    Article  CAS  Google Scholar 

  28. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242

    Article  CAS  Google Scholar 

  29. Gampe RT Jr, Montana VG, Lambert HM, Miller AB, Bledsoe RK, Milburm MV, Kiewer SA, Willson TM, Xu HE (2000) Asymmetry in the PPARγ/RXRα crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5:545–555

    Article  CAS  Google Scholar 

  30. Svensson S, Östberg T, Jacobsson M, Norström C, Stefansson K, Hallén D, Johansson IC, Zachrisson K, Ogg D, Jendeberg L (2003) Crystal structure of the heterodimeric complex of LXRα and RXRβ ligand-binding domain in a fully agonistic conformation. EMBO J 22:4625–4633

    Article  CAS  Google Scholar 

  31. Sato Y, Ramalanjaona N, Huet T, Osz J, Antony P, Peluso-lltis C, Poussin-Courrmontagne P, Ennifar E, Mély Y, Dejaegere A, Moras D, Rochel N (2010) The “phantom effect” of the rexinoid LG100754: structural and functional insights. PLoS ONE 5:e15119

    Article  CAS  Google Scholar 

  32. Osz J, Brélivet Y, Peluso-lltis C, Cura V, Eiler S, Ruff M, Bourguet W, Rochel N, Moras D (2012) Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors. Proc Natl Acad Sci USA 109:588–589

    Article  Google Scholar 

  33. Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, Moras D (1995) Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689

    Article  CAS  Google Scholar 

  34. Tsuji M (2015) Homology Modeling Professional for HyperChem, revision G1, Institute of Molecular Function, Saitama, Japan

  35. Tsuji M (2006) Seitaikoubunnsi Niokeru Sougosayoubui No Yosokuhouhou. Patent 2007-299125

  36. Tsuji M (2015) Docking Study with HyperChem, revision G1, Institute of Molecular Function, Saitama, Japan

  37. Autodock Vina, version 1.1.2, Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    Google Scholar 

  38. myPresto, version 4.306, Fukunishi Y, Mikami Y, Nakamura H (2005) Similarity among receptor pockets and among compounds: analysis and application to in silico ligand screening. J Mol Graph Model 24:34–45

    Article  Google Scholar 

  39. Gaddipati R, Raikundalia GK, Mathai ML (2014) Comparison of AutoDock and Glide towards the discovery of PPAR agonists. Int J Biosci Biochem Bioinforma 4:100–105

    CAS  Google Scholar 

  40. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801

    Article  CAS  Google Scholar 

Download references

Author contributions

KS., M.T., and H.K. designed the experiments. M.T. performed the experiments and analyzed data. M.T. wrote the paper. All authors approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motonori Tsuji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10822_2015_9869_MOESM1_ESM.pdf

Receptor-rigid and ligand-flexible docking simulations using Autodock Vina and Sievgene programs and ROC curves for the biomacromolecule-rigid and ligand-flexible docking simulations using Docking Study with HyperChem program (PDF 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, M., Shudo, K. & Kagechika, H. Docking simulations suggest that all-trans retinoic acid could bind to retinoid X receptors. J Comput Aided Mol Des 29, 975–988 (2015). https://doi.org/10.1007/s10822-015-9869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-015-9869-9

Keywords

Navigation