Skip to main content

Advertisement

Log in

Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host–guest binding energies

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We have estimated free energies for the binding of nine cyclic carboxylate guest molecules to the octa-acid host in the SAMPL4 blind-test challenge with four different approaches. First, we used standard free-energy perturbation calculations of relative binding affinities, performed at the molecular-mechanics (MM) level with TIP3P waters, the GAFF force field, and two different sets of charges for the host and the guest, obtained either with the restrained electrostatic potential or AM1-BCC methods. Both charge sets give good and nearly identical results, with a mean absolute deviation (MAD) of 4 kJ/mol and a correlation coefficient (R 2) of 0.8 compared to experimental results. Second, we tried to improve these predictions with 28,800 density-functional theory (DFT) calculations for selected snapshots and the non-Boltzmann Bennett acceptance-ratio method, but this led to much worse results, probably because of a too large difference between the MM and DFT potential-energy functions. Third, we tried to calculate absolute affinities using minimised DFT structures. This gave intermediate-quality results with MADs of 5–9 kJ/mol and R 2 = 0.6–0.8, depending on how the structures were obtained. Finally, we tried to improve these results using local coupled-cluster calculations with single and double excitations, and non-iterative perturbative treatment of triple excitations (LCCSD(T0)), employing the polarisable multipole interactions with supermolecular pairs approach. Unfortunately, this only degraded the predictions, probably because of a mismatch between the solvation energies obtained at the DFT and LCCSD(T0) levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gohlke H, Klebe G (2002) Angew Chem Int Ed 41:2644

    Article  CAS  Google Scholar 

  2. Jorgensen WL (2009) Acc Chem Res 42:724

    Article  CAS  Google Scholar 

  3. Zhou H-X, Gilson MK (2009) Chem Rev 109:4092

    Article  CAS  Google Scholar 

  4. Michel J, Essex JW (2010) J Comput Aided Mol Des 24:639

    Article  CAS  Google Scholar 

  5. Christ CD, Mark AE, van Gunsteren WF (2010) J Comput Chem 31:1569

    CAS  Google Scholar 

  6. Wereszczynski J, McCammon JA (2012) Quart Rev Biophys 45:1

    Article  CAS  Google Scholar 

  7. Halgren TA, Damm W (2001) Curr Opin Struct Biol 11:236

    Article  CAS  Google Scholar 

  8. Söderhjelm P, Ryde U (2009) J Phys Chem A 113:617

    Article  Google Scholar 

  9. Cavalli A, Carloni P, Recanatini M (2006) Chem Rev 106:3497

    Article  CAS  Google Scholar 

  10. Werner H.-J, Knowles P. J, Knizia G, Manby F. R, Schütz M et al (2012) MOLPRO,, version 2012.1, a package of ab initio programs. see http://www.molpro.net

  11. Raha K, Peters MB, Wang B, Yu N, Wollacott AM, Westerhoff LM, Merz KM (2007) Drug Discov Today 12:725

    Article  CAS  Google Scholar 

  12. Söderhjelm P, Kongsted J, Genheden S, Ryde U (2010) Interdiscip Sci Comput Life Sci 2:21–37

    Article  Google Scholar 

  13. Söderhjelm P, Genheden S, Ryde U (2012) Protein–ligand interactions. In: Gohlke H (ed) Methods and principles in medicinal chemistry, vol 53. Wiley-VCH, Weinheim, pp 121–143

    Google Scholar 

  14. Antony J, Grimme S (2012) J Comput Chem 33:1730

    Article  CAS  Google Scholar 

  15. Muddana HS, Varnado CD, Bielawski CW, Urbach AR, Isaacs L, Geballe MT, Gilson MK (2012) J Comput Aided Mol Des 26:475

    Article  CAS  Google Scholar 

  16. Muddana HS, Fenley AT, Mobley DL, Gilson MK (2014) Blind prediction of the host–guest binding affinities from the SAMPL4 challenge. J Comput-Aided Mol Design (in press)

  17. Gibb CLD, Gibb BCJ (2004) Am Chem Soc 126:11408

    Article  CAS  Google Scholar 

  18. Sun H, Gibb CLD, Gibb BC (2008) Supramol Chem 20:141

    Article  CAS  Google Scholar 

  19. Gibb CLD, Gibb BC (2009) Tetrahedron 65:7240

    Article  CAS  Google Scholar 

  20. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  21. Grimme S (2012) Chem Eur J 18:9955

    Article  CAS  Google Scholar 

  22. Hampel C, Werner H-J (1996) J Chem Phys 104:6286

    Article  CAS  Google Scholar 

  23. Andrejić M, Mata RA, Ryde U, Söderhjelm P (2014) Chem Phys Chem (submitted)

  24. Wang JM, Wolf RM, Caldwell KW, Kollman PA, Case DA (2004) J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  25. Jorgensen WL, Chandrasekhar J, Madura JD, Impley RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  26. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossvai I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye Q, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. University of California, San Francisco

    Google Scholar 

  27. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) J Comput Chem 21:132–146

    Article  CAS  Google Scholar 

  28. Jakalian A, Jack DB, Bayly CI (2002) J Comput Chem 23:1623–1641

    Article  CAS  Google Scholar 

  29. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  30. Besler BH, Merz KM, Kollman PA (1990) J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A02. Gaussian Inc, Wallingford CT

    Google Scholar 

  32. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  33. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  34. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  35. Genheden S, Ryde U (2011) J Comput Chem 32:187

    Article  CAS  Google Scholar 

  36. Wu X, Brooks BR (2003) Chem Phys Lett 381:512–518

    Article  CAS  Google Scholar 

  37. Tembe BL, McCammon JA (1984) Comp Chem 8:281–283

    Article  CAS  Google Scholar 

  38. Bennett CH (1976) J Comput Phys 22:245–268

    Article  Google Scholar 

  39. Shirts MR, Pande VS (2005) J Chem Phys 122:144107

    Article  Google Scholar 

  40. Shirts MR, Chodera JD (2008) J Chem Phys 129:124105

    Article  Google Scholar 

  41. Kirkwood JG (1935) J Chem Phys 3:300–313

    Article  CAS  Google Scholar 

  42. Zwanzig RWJ (1954) Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

  43. Steinbrecher T, Mobley DL, Case DA (2007) J Chem Phys 127:214108

    Article  Google Scholar 

  44. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  45. Treutler O, Ahlrichs RJ (1995) Chem Phys 102:346

    Article  CAS  Google Scholar 

  46. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    Article  Google Scholar 

  47. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  48. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  49. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Article  Google Scholar 

  50. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  51. Weigend F, Furche F, Ahlrichs R (2003) J Chem Phys 119:12753

    Article  CAS  Google Scholar 

  52. Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283–290

    Article  CAS  Google Scholar 

  53. Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–126

    Article  CAS  Google Scholar 

  54. Sierka M, Hogekamp A, Ahlrichs R (2003) J Chem Phys 118:9136

    Article  CAS  Google Scholar 

  55. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  56. http://www.thch.uni-bonn.de/tc/index.php?section=downloads&subsection=getd3

  57. Klamt A, Schüürmann J (1993) J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  58. Schäfer A, Klamt A, Sattel D, Lohrenz JCW, Eckert F (2000) Phys Chem Chem Phys 2:2187–2193

    Article  Google Scholar 

  59. Klamt A, Jonas V, Bürger T, Lohrenz JCW (1998) J Phys Chem 102:5074–5085

    Article  CAS  Google Scholar 

  60. Klamt A (1995) J Phys Chem 99:2224

    Article  CAS  Google Scholar 

  61. Eckert F, Klamt A (2002) AIChE J 48:369

    Article  CAS  Google Scholar 

  62. Eckert F, Klamt A (2010) COSMOtherm, version C30, release 1301. COSMOlogic GmbH & Co KG, Leverkusen

    Google Scholar 

  63. Jensen F (1999) Introduction to computational chemistry. Wiley, Chichester, pp 298–303

    Google Scholar 

  64. Kaukonen M, Söderhjelm P, Heimdal J, Ryde U (2008) J Chem Theory Comput 4:985

    Article  CAS  Google Scholar 

  65. Söderhjelm P, Husberg C, Strambi A, Olivucci M, Ryde U (2009) J Chem Theory Comput 5:649

    Article  Google Scholar 

  66. Hu L, Eliasson J, Heimdal J, Ryde U (2009) J Phys Chem A 113:11793

    Article  CAS  Google Scholar 

  67. Genheden S, Ryde U (2012) J Chem Theory Comput 8:1449

    Article  CAS  Google Scholar 

  68. Wesolowski T, Warshel A (1994) J Phys Chem 98:5183–5187

    Article  CAS  Google Scholar 

  69. Olsson MH, Hong G, Warshel A (2003) J Am Chem Soc 125:5025–5039

    Article  CAS  Google Scholar 

  70. Wood RH, Yezdimer EM, Sakane S, Barriocanal JA, Doren DJJ (1999) Chem Phys 110:1329

    Article  CAS  Google Scholar 

  71. Rod TH, Ryde U (2005) Phys Rev Lett 94:138302

    Article  Google Scholar 

  72. Plotnikov NV, Kamerlin SCL, Warshel A (2011) J Phys Chem B 115:7950–7962

    Article  CAS  Google Scholar 

  73. Woods CJ, Manby FR, Mulholland AJ (2008) J Chem Phys 128:014109

    Article  Google Scholar 

  74. Beierlein FR, Michel J, Essex JW (2011) J Phys Chem B 115:4911–4926

    Article  CAS  Google Scholar 

  75. König G, Boresch S (2011) J Comput Chem 32:1082

    Article  Google Scholar 

  76. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  77. Woon DE, Dunning TH (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  78. Polly R, Werner H-J, Manby FR, Knowles PJ (2004) Mol Phys 102:2311

    Article  CAS  Google Scholar 

  79. Werner H-J, Manby FR, Knowles PJ (2003) J Chem Phys 118:8149

    Article  CAS  Google Scholar 

  80. Weigend F (2002) Phys Chem Chem Phys 4:4285

    Article  CAS  Google Scholar 

  81. Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175

    Article  CAS  Google Scholar 

  82. Pipek J, Mezey PG (1989) J Chem Phys 90:4916–4926

    Article  CAS  Google Scholar 

  83. Mata RA, Werner H-J (2007) Mol Phys 105:2753–2761

    Article  CAS  Google Scholar 

  84. Dieterich JM, Werner H-J, Mata RA, Metz S, Thiel W (2010) J Chem Phys 132:035101

    Article  Google Scholar 

  85. Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639

    Article  CAS  Google Scholar 

  86. Genheden S, Ryde U (2010) J Comput Chem 31:837–846

    CAS  Google Scholar 

  87. Pearlman DA, Charifson PS (2001) J Med Chem 44:3417

    Article  CAS  Google Scholar 

  88. Mikulskis P, Genheden S, Rydberg P, Sandberg L, Olsen L, Ryde U (2012) J Comput-Aided Mol Design 26:527–554

    Article  CAS  Google Scholar 

  89. Gibb CLD, Gibb B (2013) J Comput-Aided Mol Design. doi:10.1007/s10822-013-9690-2

  90. Heimdal J, Ryde U (2012) Phys Chem Chem Phys 14:12592–12604

    Article  CAS  Google Scholar 

  91. Genheden S, Nilsson I, Ryde U (2011) J Chem Inf Model 51:947–958

    Article  CAS  Google Scholar 

  92. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  93. Ryde U, Mata RA, Grimme S (2011) Dalton Trans 40:11176

    Article  CAS  Google Scholar 

  94. Sure R, Antony J, Grimme S (2014) J Phys Chem B (submitted)

  95. Sure R, Grimme S (2013) J Comput Chem 34:1672–1685

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This investigation has been supported by Grants from the Swedish research council (project 2010-5025). The computations were performed on computer resources provided by the Swedish National Infrastructure for Computing (SNIC) at Lunarc at Lund University and HPC2N at Umeå University. The collaboration between the Universities of Lund and Göttingen has been carried out within the framework of the International Research Training Group 1422 Metal Sites in Biomolecules—Structures, Regulation, Mechanisms and M. A. is supported through a Ph.D. scholarship in this International Research Training Group. D. C. thanks FEBS for a short-term fellowship. We are grateful to Prof. Stefan Grimme for providing us with the thermo program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pär Söderhjelm or Ulf Ryde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikulskis, P., Cioloboc, D., Andrejić, M. et al. Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host–guest binding energies. J Comput Aided Mol Des 28, 375–400 (2014). https://doi.org/10.1007/s10822-014-9739-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-014-9739-x

Keywords

Navigation