Skip to main content
Log in

Conformational landscape of platinum(II)-tetraamine complexes: DFT and NBO studies

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The potential energy surfaces of chiral tetraamine Pt(II) coordination complexes were computed at the B3LYP/LANL2DZ level of theory by a systematic variation of two dihedral angles: C12–C15–C34–C37 (θ) and C24–C17–C31–C48 (ψ) employing a grid resolution of 30°. Potential energy surfaces calculated using density functional theory methods and Boltzmann-derived populations revealed strong preference for one diasteromer of each series studied. In addition, natural bond orbital analysis show that the minima are stabilized predominantly by a combination of electronic interactions between two phenyl groups, the phenyl groups and the Pt2+ ion, as well as with the amine groups. Additional experimental characterization of the diasteroisomers studied here is in progress and will permit further molecular modeling studies with the appropriate stereochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun RW-Y, Ma D-L, Wong EL-M, Che C-M (2007) Dalton Trans 43:4884–4892

    Google Scholar 

  2. Inouye Y, Kanamori T, Sugiyama M, Yoshida T, Koike T, Shionoya M, Enomoto K, Suehiro K, Kimura E (1995) Antivir Chem Chemother 6:337–344

    CAS  Google Scholar 

  3. Singh RV, Joshi SC, Kulshrestha S, Nagpal P, Bansal A (2001) Metal Based Drugs 8:149–158

    Article  CAS  Google Scholar 

  4. Ming L-J, Epperson JD (2002) J Inorg Biochem 91:46–58

    Article  CAS  Google Scholar 

  5. Hollis LS, Amundsen AR, Stern EW (1989) J Med Chem 32:128–136

    Article  CAS  Google Scholar 

  6. Zheng H, Hu W, Yu D, Shen D-Y, Fu S, Kavanagh JJ, Wei I-C, Yang DJ (2008) Pharm Res 25:2272–2282

    Article  CAS  Google Scholar 

  7. Meggers E (2007) Curr Opin Chem Biol 11:287–292

    Article  CAS  Google Scholar 

  8. Orvig C, Abrams MJ (1999) Chem Rev 99:2201–2203

    Article  CAS  Google Scholar 

  9. Bregman H, Carroll PJ, Meggers E (2006) J Am Chem Soc 128:877–884

    Article  CAS  Google Scholar 

  10. Budzisz E, Malecka M, Lorenz I-P, Mayer P, Kwiecien RA, Paneth P, Krajewska U, Rozalski M (2006) Inorg Chem 45:9688–9695

    Article  CAS  Google Scholar 

  11. Lovejoy KS, Todd RC, Zhang S, McCormick MS, D’Aquino JA, Reardon JT, Sancar A, Giacomini KM, Lippard SJ (2008) Proc Natl Acad Sci USA 105:8902–8907

    Article  CAS  Google Scholar 

  12. Williams DS, Carroll PJ, Meggers E (2007) Inorg Chem 46:2944–2946

    Article  CAS  Google Scholar 

  13. Rosenberg B, Van Camp L, Krigas L (1965) Nature 205:698–699

    Article  CAS  Google Scholar 

  14. Rosenberg B (1985) Cancer 55:2303–2316

    Article  CAS  Google Scholar 

  15. Ludwig T, Riethmuller C, Gekle M, Schwerdt G, Oberleithner H (2004) Kidney Int 66:196–202

    Article  CAS  Google Scholar 

  16. Weiss RB, Christian MC (1993) Drugs 46:360–377

    Article  CAS  Google Scholar 

  17. Zhang S, Lovejoy KS, Shima JE, Lagpacan LL, Shu Y, Lapuk A, Chen Y, Komori T, Gray JW, Chen X, Lippard SJ, Giacomini KM (2006) Cancer Res 66:8847–8857

    Article  CAS  Google Scholar 

  18. Dooley CT, Chung NN, Wilkes BC, Schiller PW, Bidlack JM, Pasternak GW, Houghten RA (1994) Science 266:2019–2022

    Article  CAS  Google Scholar 

  19. Houghten RA, Pinilla C, Appel JR, Blondelle sE, Dooley CT, Eichler J, Nefzi A, Ostresh JM (1999) J Med Chem 42:3743–3778

    Article  CAS  Google Scholar 

  20. Pinilla C, Appel JR, Borras E, Houghten RA (2003) Nat Med 9:118–122

    Article  CAS  Google Scholar 

  21. Nefzi A, Hoesl CE, Pinilla C, Kauffman GB, Maggiora GM, Pasquale E, Houghten RA (2006) J Comb Chem 8:780–783

    Article  CAS  Google Scholar 

  22. Meggers E (2009) Chem Commun 1001–1010

  23. Mora MA, Raya A, Mora-Ramirez MA (2002) Int J Quantum Chem 90:882–887

    Article  CAS  Google Scholar 

  24. Hasinoff BB, Wu X, Yang Y (2004) J Inorg Biochem 98:616–624

    Article  CAS  Google Scholar 

  25. Davies HO, Brown DA, Yanovsky AI, Nolan KB (1998) Inorg Chim Acta 268:313–316

    Article  CAS  Google Scholar 

  26. Messori L, Shaw J, Camalli M, Mura P, Marcon G (2003) Inorg Chem 42:6166–6168

    Article  CAS  Google Scholar 

  27. Granifo J, Vargas ME, Rocha H, Garland MT, Baggio R (2001) Inorg Chim Acta 321:209–214

    Article  CAS  Google Scholar 

  28. Rotondo A (2006) Acta Crystallogr Sect C: Cryst Struct Commun 62:m19–m21

    Article  Google Scholar 

  29. Hollis LS, Amundsen AR, Stern EW (1985) J Am Chem Soc 107:274–276

    Article  CAS  Google Scholar 

  30. Liljefors T, Pettersson I (2002) In: Krogsgaard-Larsen P, Liljefors T, Madsen U (eds) Textbook of drug design and discovery. Taylor & Francis, London, pp 86–116

    Google Scholar 

  31. Perola E, Charifson PS (2004) J Med Chem 47:2499–2510

    Article  CAS  Google Scholar 

  32. Butler KT, Luque FJ, Barril X (2009) J Comput Chem 30:601–610

    Article  CAS  Google Scholar 

  33. Yongye AB, Foley BL, Woods RJ (2008) J Phys Chem A 112:2634–2639

    Article  CAS  Google Scholar 

  34. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) Theoretical Chemistry Institute, University of Wisconsin, Madison: NBO 5.0

  35. Dunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry. Plenum, New York, p 1

    Google Scholar 

  36. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  37. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  38. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda J, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui A, Baboul AG, Clifford S, Cioslowshi J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004)

  40. Dennington II R, Keith T, Millam J (2007) Semichem Inc., Shawnee Mission, KS

Download references

Acknowledgments

This work was supported by the State of Florida, Executive Officer of the Governor’s Office of Tourism, Trade and Economic Development, and by the National Science Foundation (CHE0455072 to R.A.H.). The authors thank the Florida State University High Performance Computing Facility for supercomputing time and Dr. Carmen Ortega-Alfaro for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Martínez-Mayorga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 903 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yongye, A.B., Giulianotti, M.A., Nefzi, A. et al. Conformational landscape of platinum(II)-tetraamine complexes: DFT and NBO studies. J Comput Aided Mol Des 24, 225–235 (2010). https://doi.org/10.1007/s10822-010-9328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9328-6

Keywords

Navigation