Skip to main content
Log in

A Synthetic Proof of Pappus’ Theorem in Tarski’s Geometry

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

In this paper, we report on the formalization of a synthetic proof of Pappus’ theorem. We provide two versions of the theorem: the first one is proved in neutral geometry (without assuming the parallel postulate), the second (usual) version is proved in Euclidean geometry. The proof that we formalize is the one presented by Hilbert in The Foundations of Geometry, which has been described in detail by Schwabhäuser, Szmielew and Tarski in part I of Metamathematische Methoden in der Geometrie. We highlight the steps that are still missing in this later version. The proofs are checked formally using the Coq proof assistant. Our proofs are based on Tarski’s axiom system for geometry without any continuity axiom. This theorem is an important milestone toward obtaining the arithmetization of geometry, which will allow us to provide a connection between analytic and synthetic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. http://dpt-info.u-strasbg.fr/~narboux/AreaMethod/AreaMethod.examples_4.html.

  2. http://www-sop.inria.fr/marelle/CertiGeo/pappus.html.

  3. Note that we do not use the same notation as in the book [21].

  4. This definition is called R in [21]. We call it Per because we want to keep single letter notations for points.

  5. Note, however that for arithmetization of geometry we will need to use this axiom to obtain the standard axioms of an ordered field expressed using functions instead of relations [1].

References

  1. Boutry, P., Braun, G., Narboux, J.: From Tarski to Descartes: formalization of the arithmetization of euclidean geometry. In: The 7th International Symposium on Symbolic Computation in Software (SCSS 2016), EasyChair Proceedings in Computing, p. 15. Tokyo, Japan (2016)

  2. Beeson, M.: Proof and computation in geometry. In: Ida, T., Fleuriot, J. (eds.) Automated Deduction in Geometry (ADG 2012), Volume 7993 of Springer Lecture Notes in Artificial Intelligence, pp. 1–30. Springer, Heidelberg (2013)

  3. Beeson, M.: A constructive version of Tarski’s geometry. Ann. Pure Appl. Log. 166(11), 1199–1273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behnke, H., Gould, S.H.: Fundamentals of Mathematics: Geometry. MIT Press, New York (1974)

    Google Scholar 

  5. Bezem, M., Hendriks, D.: On the mechanization of the proof of Hessenberg’s theorem in coherent logic. J. Autom. Reason. 40(1), 61–85 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braun, G., Narboux, J.: From Tarski to Hilbert. In: Ida, T., Fleuriot, J. (eds.) Post-Proceedings of Automated Deduction in Geometry 2012, Volume 7993 of LNCS, pp. 89–109. Springer, Edinburgh (2012)

  7. Boutry, P., Narboux, J., Schreck, P.: A Reflexive Tactic for Automated Generation of Proofs of Incidence to an Affine Variety. October (2015)

  8. Boutry, P., Narboux, J., Schreck, P.: Parallel Postulates and Decidability of Intersection of Lines: A Mechanized Study Within Tarski’s System of Geometry. Submitted, July (2015)

  9. Boutry, P., Narboux, J., Schreck, P., Braun, G.: Ashort note about case distinctions in Tarski’s geometry. In: Botana, F., Quaresma, P. (eds.) Automated Deduction in Geometry 2014, Proceedings of ADG 2014, pp. 1–15. Coimbra, Portugal (2014)

  10. Boutry, P., Narboux, J., Schreck, P., Braun, G.: Using small scale automation to improve both accessibility andreadability of formal proofs in geometry. In: Botana, F., Quaresma, P. (eds.) Automated Deduction in Geometry2014, Proceedings of ADG 2014, pp. 1–19. Coimbra, Portugal (2014)

  11. Castéran, P.: Coq + \(\epsilon \)? In: JFLA, pp. 1–15 (2007)

  12. Dehlinger, C., Dufourd, J.-F., Schreck, P.: Higher-order intuitionistic formalization and proofs in Hilbert’s elementary geometry. In: Automated Deduction in Geometry (2000)

  13. Grégoire, B., Pottier, L., Théry, L.: Proof certificates for algebra and their application to automatic geometry theorem proving. In: Post-Proceedings of Automated Deduction in Geometry (ADG 2008), Number 6701 in Lecture Notes in Artificial Intelligence (2011)

  14. Hilbert, D.: Foundations of Geometry (Grundlagen der Geometrie). Open Court, La Salle, Illinois, 1960. Second English edition, translated from the tenth German edition by Leo Unger. Original publication date (1899)

  15. Janicic, P., Narboux, J., Quaresma, P.: The area method: a recapitulation. J. Autom. Reason. 48(4), 489–532 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Magaud, N., Narboux, J., Schreck, P.: A case study in formalizing projective geometry in Coq: Desargues theorem. Comput. Geom. 45(8), 406–424 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Narboux, J.: Mechanical theorem proving in Tarski’s geometry. In: Botana, F., Lozano, E.R. (eds.), Post-Proceedings of Automated Deduction in Geometry 2006, Volume 4869 of LNCS, pp. 139–156. Springer, Pontevedra, Spain (2007)

  18. Oryszczyszyn, H., Prazmowski, K.: Classical configurations in affine planes. J. Formaliz. Math. 2 (1990)

  19. Pasch, M.: Vorlesungen über Neuere Geometrie. Springer, New York (1976)

    Book  MATH  Google Scholar 

  20. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs, Volume 5170 of Lecture Notes in Computer Science, pp. 278–293. Springer, New York (2008)

  21. Schwabhäuser, W., Szmielew, W., Tarski, A.: Metamathematische Methoden in der Geometrie. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Narboux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, G., Narboux, J. A Synthetic Proof of Pappus’ Theorem in Tarski’s Geometry. J Autom Reasoning 58, 209–230 (2017). https://doi.org/10.1007/s10817-016-9374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-016-9374-4

Keywords

Navigation