Skip to main content
Log in

Automated Proofs for Asymmetric Encryption

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Many generic constructions for building secure cryptosystems from primitives with lower level of security have been proposed. Providing security proofs has also become standard practice. There is, however, a lack of automated verification procedures that analyze such cryptosystems and provide security proofs. In this paper, we present a sound and automated procedure that allows us to verify that a generic asymmetric encryption scheme is secure against chosen-plaintext attacks in the random oracle model. It has been applied to several examples of encryption schemes among which the construction of Bellare–Rogaway 1993, of Pointcheval at PKC’2000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barthe, G., Cederquist, J., Tarento, S.: A machine-checked formalization of the generic model and the random oracle model. In: Basin, D., Rusinowitch, M. (eds.) Proceedings of IJCAR’04, vol. 3097 of LNCS, pp. 385–399 (2004)

  2. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: FOCS, pp. 394–403 (1997)

  3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: CRYPTO ’98: Proceedings of the 18th Annual International Cryptology Conference on Advances in Cryptology, pp. 26–45, London, UK. Springer, Heidelberg (1998)

    Google Scholar 

  4. Barthe, G., Grégoire, B., Zanella Béguelin, S.: Formal certification of code-based cryptographic proofs. In: POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 90–101. ACM, New York (2009)

    Google Scholar 

  5. Blanchet, B.: A computationally sound mechanized prover for security protocols. In: IEEE Symposium on Security and Privacy (S&P 2006), 21–24, pp. 140–154. IEEE Computer Society, Washington (2006)

    Google Scholar 

  6. Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games. In: Dwork, C. (ed.) CRYPTO, vol. 4117 of Lecture Notes in Computer Science, pp. 537–554. Springer, Heidelberg (2006)

    Google Scholar 

  7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: CCS ’93: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73. ACM, New York (1993)

    Chapter  Google Scholar 

  8. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT, vol. 950 of Lecture Notes in Computer Science, pp. 92–111. Springer, Heidelberg (1994)

    Google Scholar 

  9. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint Archive, Report 2004/331. http://eprint.iacr.org/ (2004)

  10. Barthe, G., Tarento, S.: A machine-checked formalization of the random oracle model. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) Proceedings of TYPES’04, vol. 3839 of Lecture Notes in Computer Science, pp. 33–49. Springer, Heidelberg (2004)

    Google Scholar 

  11. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lahknech, Y.: Towards automated proofs for asymmetric encryption schemes in the random oracle model. Technical report, Verimag, Verimag, Centre Équation, 38610 Gières (2009)

  12. Corin, R., den Hartog, J.: A probabilistic Hoare-style logic for game-based cryptographic proofs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP (2), vol. 4052 of Lecture Notes in Computer Science, pp. 252–263. Springer, Heidelberg (2006)

    Google Scholar 

  13. Damgard, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: CRYPTO ’91: Proceedings of the 11th Annual International Cryptology Conference on Advances in Cryptology, pp. 445–456. Springer, London (1992)

    Google Scholar 

  14. Datta, A., Derek, A., Mitchell, J.C., Warinschi, B.: Computationally sound compositional logic for key exchange protocols. In: CSFW ’06: Proceedings of the 19th IEEE Workshop on Computer Security Foundations, pp. 321–334. IEEE Computer Society, Washington (2006)

    Google Scholar 

  15. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory IT-22, 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  16. Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2), 77–94 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Halevi, S.: A plausible approach to computer-aided cryptographic proofs. http://theory.lcs.mit.edu/~shaih/pubs.html (2005)

  18. Okamoto, T., Pointcheval, D.: React: Rapid enhanced-security asymmetric cryptosystem transform. In: CT-RSA 2001: Proceedings of the 2001 Conference on Topics in Cryptology, pp. 159–175. Springer, London(2001)

    Chapter  Google Scholar 

  19. Pointcheval, D.: Chosen-ciphertext security for any one-way cryptosystem. In: PKC ’00: Proceedings of the Third International Workshop on Practice and Theory in Public Key Cryptography, pp. 129–146. Springer, London (2000)

    Google Scholar 

  20. Rabin, M.O.: Digitalized signatures as intractable as factorization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology, Cambridge (1979)

    Google Scholar 

  21. Shoup, V.: OAEP reconsidered. J. Cryptol. 15(4), 223–249 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs http://eprint.iacr.org/2004/332 (2004)

  23. Soldera, D., Seberry, J., Qu, C.: The analysis of Zheng–Seberry scheme. In: Batten, L.M., Seberry, J. (eds.) ACISP, vol. 2384 of Lecture Notes in Computer Science, pp. 159–168. Springer, Heidelberg (2002)

    Google Scholar 

  24. Tarento, S.: Machine-checked security proofs of cryptographic signature schemes. In: De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) Computer Security–ESORICS 2005, vol. 3679 of Lecture Notes in Computer Science, pp. 140–158. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Zheng, Y., Seberry, J.: Immunizing public key cryptosystems against chosen ciphertext attacks. IEEE J. Sel. Areas Commun. 11(5), 715–724 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lafourcade.

Additional information

This work is partially supported by the ANR projects SCALP, AVOTE and SFINCS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courant, J., Daubignard, M., Ene, C. et al. Automated Proofs for Asymmetric Encryption. J Autom Reasoning 46, 261–291 (2011). https://doi.org/10.1007/s10817-010-9186-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-010-9186-x

Keywords

Navigation