Skip to main content
Log in

A Statistical Examination of Flake Edge Angles Produced During Experimental Lineal Levallois Reductions and Consideration of Their Functional Implications

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Recent studies have indicated that Levallois-style core reduction offered potential practical benefits to hominin populations. However, none of these studies have yet considered one of the most important functional attributes of flake tools, which is edge angle. To address this shortcoming, we statistically examined flakes produced experimentally during “classic” or “lineal” Levallois core production and reduction. The primary aim of our analyses was to statistically test the null hypothesis of “no difference” between the edge angles of “Levallois” products and the flakes involved in their production. We employ existing edge angle analytical techniques and develop new comparative methodologies to assess flake blank standardization through the case of Levallois core reduction. Having determined the statistical properties of our experimental Levallois reductions, we thereafter evaluated to what extent edge angles produced may, or may not, have been useful to prehistoric hominins. Our analyses demonstrated that the experimentally produced Levallois edge angles were indeed statistically different from the flakes involved in their production. These differences were evident both in terms of relatively higher (i.e., more obtuse) edge angles than debitage flakes and in being significantly less variable around their higher mean edge angles compared to debitage flakes. However, based on current knowledge of how flake edge angle properties relate to issues of functionality, such differences would not have been detrimental to their functionality. Indeed, the edge angle properties they possess would have provided distinct benefits to hominins engaged in their manufacture. Most notably, Levallois-style core organization and reduction would have provided hominins with a reliable means of consistently producing flakes (i.e., “Levallois flakes”) possessing average flake angles that are beneficial in terms of providing a viable cutting edge yet not being so acute as to be friable upon application. Hence, edge angle properties join an array of other features that provide logical motive for why hominins may have organized core production and reduction around Levallois-style patterns at various times and places during the Mid-Late Pleistocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler, D. S., Wilkinson, K. N., Blockley, S., Mark, D. F., Pinhasi, R., Schmidt-Magee, B. A., Nahapetyan, S., Mallol, C., Berna, F., Glauberman, P. J., Rasczynski-Henk, Y., Wales, N., Frahm, E., Jöris, O., MacLeod, A., Smith, V. C., Cullen, V. L., & Gasparian, B. (2014). Early Levallois technology and the Lower to Middle Paleolithic transition in the Southern Caucasus. Science, 345, 1609–1613.

    Article  Google Scholar 

  • Atkins, T. (2009). The science and engineering of cutting: the mechanics and processes of separating, scratching and puncturing biomaterials, metals and non-metals. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Beck, C. (1995). Functional attributes and differential persistence of Great Basin dart forms. Journal of California and Great Basin Anthropology, 17, 222–243.

    Google Scholar 

  • Bleed, P. (2001). Artifice constrained: what determines technological choice? In M. B. Schiffer (Ed.), Perspectives on Technology (pp. 151–162). Albuquerque: University of New Mexico Press.

    Google Scholar 

  • Boëda, E. (1995). Levallois: a volumetric construction, methods, a technique. In H. L. Dibble & O. Bar-Yosef (Eds.), The Definition and Interpretation of Levallois Technology (pp. 41–68). Madison: Prehistory Press.

    Google Scholar 

  • Bordes, F. (1950). Principes d’une méthode d’étude des techniques de debitage et de la typologie du Paléolithique ancien et moyen. L'Anthropologie, 54, 19–34.

  • Borel, A., Gaillard, C., Moncel, M.-H., Sala, R., Pouydebat, E., Simanjuntak, T., & Sémah, F. (2013). How to interpret informal flake assemblages? Integrating morphological description, usewear and morphometric analysis gave better understanding of the behaviors of Anatomically Modern Humans from Song Terus (Indonesia). Journal of Anthropological Archaeology, 32, 630–646.

    Article  Google Scholar 

  • Bradley, B., (1977). Experimental Lithic Technology with Special Reference to the Middle Palaeolithic. Unpublished Ph.D. dissertation, Department of Archaeology, Cambridge University.

  • Brantingham, P. J., & Kuhn, S. L. (2001). Constraints on Levallois core technology: a mathematical model. Journal of Archaeological Science, 28, 747–761.

    Article  Google Scholar 

  • Brantingham, P. J., Olsen, J. W., Rech, J. A., & Krivoshapkin, A. I. (2000). Raw material quality and prepared core technologies in Northeast Asia. Journal of Archaeological Science, 27, 255–271.

    Article  Google Scholar 

  • Braun, D. R., Plummer, T., Ferraro, J. V., Ditchfield, P., & Bishop, L. C. (2009). Raw material quality and Oldowan hominin toolstone preferences: evidence from Kanjera South, Kenya. Journal of Archaeological Science, 36, 1605–1614.

  • Chazan, M. (1997). Redefining Levallois. Journal of Human Evolution, 33, 719–735.

    Article  Google Scholar 

  • Clarke, D. L. (1972). Models and paradigms in contemporary archaeology. In D. L. Clarke (Ed.), Models in Archaeology (pp. 1–60). London: Methuen.

    Google Scholar 

  • Collins, S. (2008). Experimental investigations into edge performance and its implications for stone artefact reduction modelling. Journal of Archaeological Science, 35, 2164–2170.

    Article  Google Scholar 

  • Commont, V. (1909). L’industrie moustérienne dans la region de nord de la France. Congrés Préhistorique de France, 5ième session. Bureaux de la Société Préhistoire de France, Paris, pp 115–157.

  • Delagnes, A. (1995). Variability within uniformity: three levels of variability within the Levallois system. In H. L. Dibble & O. Bar-Yosef (Eds.), The Definition and Interpretation of Levallois Technology (pp. 201–213). Madison: Prehistory Press.

    Google Scholar 

  • Dibble, H. L. (1989). The implications of stone tool types for the presence of language during the Lower and Middle Palaeolithic. In P. Mellars & C. Stringer (Eds.), The human revolution: behavioural and biological perspectives on the origins of modern humans (pp. 415–432). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Dibble, H. L., & Bernard, M. C. (1980). A comparative study of basic edge angle measurement techniques. American Antiquity, 45, 857–865.

    Article  Google Scholar 

  • Dytham, C. (2011). Choosing and using statistics: a biologist’s guide (3rd ed.). Oxford: Blackwell Science.

    Google Scholar 

  • Eerkens, J. W., & Bettinger, R. L. (2001). Techniques for assessing standardization in artifact assemblages: can we scale variability? American Antiquity, 66, 493–504.

    Article  Google Scholar 

  • Eren, M., & Bradley, B. (2009). Experimental evaluation of the Levallois “core shape maintenance” hypothesis. Lithic Technology, 34, 119–125.

    Google Scholar 

  • Eren, M. I., & Lycett, S. J. (2012). Why Levallois? A morphometric comparison of experimental ‘preferential’ Levallois flakes versus debitage flakes. PLoS ONE, 7, e29273. doi:10.1371/journal.pone.0029273.

    Article  Google Scholar 

  • Eren, M. I., Bradley, B., & Sampson, C. G. (2011a). Middle Paleolithic skill-level and the Individual knapper: an experiment. American Antiquity, 76, 229–251.

    Article  Google Scholar 

  • Eren, M. I., Lycett, S. J., Roos, C., & Sampson, C. G. (2011b). Toolstone constraints on knapping skill: Levallois reduction with two different raw materials. Journal of Archaeological Science, 38, 2731–2739.

    Article  Google Scholar 

  • Eren, M. I., Patten, R. J., O’Brien, M. J., & Meltzer, D. J. (2013). Refuting the technological cornerstone of the Ice-Age Atlantic crossing hypothesis. Journal of Archaeological Science, 40, 2934–2941.

    Article  Google Scholar 

  • Feltz, C. J., & Miller, G. E. (1996). An asymptotic test for the equality of coefficients of variation from k populations. Statistics in Medicine, 15, 647–658.

    Article  Google Scholar 

  • Ferguson, W. C. (1980). Edge-angle classification of the Quininup Brook implements: testing the ethnographic analogy. Archaeology and Physical Anthropology in Oceania, 15, 56–72.

    Google Scholar 

  • Gould, R. A. (1980). Living Archaeology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gould, R. A., Koster, D. A., & Sontz, A. H. L. (1971). The lithic assemblage of the Western Desert Aborigines of Australia. American Antiquity, 36, 149–169.

    Article  Google Scholar 

  • Hayden, B., Franco, N., & Spafford, J. (1996). Evaluating lithic strategies and design criteria. In G. H. Odell (Ed.), Stone tools: theoretical insights into human prehistory (pp. 9–50). New York: Plenum Press.

    Chapter  Google Scholar 

  • Hovers, E., & Belfer-Cohen, A. (2013). On variability and complexity. Current Anthropology, 54, S337–S357.

    Article  Google Scholar 

  • Hublin, J.-J. (2009). The origin of Neandertals. Proceedings of the National Academy of Sciences USA, 106, 16022–16027.

    Article  Google Scholar 

  • Jensen, H. J. (1986). Unretouched blades in the Late Mesolithic of South Scandinavia: a functional study. Oxford Journal of Archaeology, 5, 19–33.

    Article  Google Scholar 

  • Kardong, K. V. (2006). Vertebrates: comparative anatomy, function, evolution. Boston: MA, McGraw-Hill.

    Google Scholar 

  • Key, A. J. M., & Lycett, S. J. (2015). Edge angle as a variably influential factor in flake cutting efficiency: an experimental investigation of its relationship with tool size and loading. Archaeometry. doi:10.1111/arcm.12140.

    Google Scholar 

  • Kuhn, S. L. (1994). A formal approach to the design and assembly of mobile toolkits. American Antiquity, 59, 426–442.

    Article  Google Scholar 

  • Kuhn, S. L., & Hovers, E. (2013). Alternative pathways to complexity: evolutionary trajectories in the Middle Paleolithic and Middle Stone Age. Current Anthropology, 54, S176–S182.

    Article  Google Scholar 

  • Lycett, S. J. (2009). Are Victoria West cores ‘proto-Levallois’? A phylogenetic assessment. Journal of Human Evolution, 56(2), 175–191.

    Article  Google Scholar 

  • Lycett, S. J., & Eren, M. I. (2013a). Levallois lessons: the challenge of integrating mathematical models, quantitative experiments and the archaeological record. World Archaeology, 45, 519–538.

    Article  Google Scholar 

  • Lycett, S. J., & Eren, M. I. (2013b). Levallois economics: an examination of ‘waste’ production in experimentally produced Levallois reduction sequences. Journal of Archaeological Science, 40, 2384–2392.

    Article  Google Scholar 

  • Lycett, S. J., & Gowlett, J. A. J. (2008). On questions surrounding the Acheulean ‘tradition’. World Archaeology, 40, 295–315.

    Article  Google Scholar 

  • McBrearty, S., Bishop, L., Plummer, T., Dewar, R., & Conard, N. (1998). Tools underfoot: human trampling as an agent of lithic artifact edge modification. American Antiquity, 63, 108–129.

    Article  Google Scholar 

  • McPherron, S. P., Braun, D. R., Dogandžić, T., Archer, W., Desta, D., & Lin, S. C. (2014). An experimental assessment of the influences on edge damage to lithic artifacts: a consideration of edge angle, substrate grain size, raw material properties, and exposed face. Journal of Archaeological Science, 49, 70–82.

    Article  Google Scholar 

  • Meignen, L., Delagnes, A., & Bourguignon, L. (2009). Patterns of lithic material procurements and transformation during the Middle Palaeolithic in western Europe. In B. Adams & B. S. Blades (Eds.), Lithic Materials and Palaeolithic Societies (pp. 15–24). Chichester: Blackwell.

    Chapter  Google Scholar 

  • Moncel, M.-H., Moigne, A.-M., Sam, Y., & Combier, J. (2011). The emergence of Neanderthal technical behavior: new evidence from Orgnac 3 (Level 1, MIS 8), southeastern France. Current Anthropology, 52, 37–75.

    Article  Google Scholar 

  • Noble, W., & Davidson, I. (1996). Human evolution, language and mind: a psychological and archaeological enquiry. Cambridge: Cambridge University Press.

    Google Scholar 

  • O’Brien, M. J., Holland, T. D., Hoard, R. J., & Fox, G. L. (1994). Evolutionary implications of design and performance characteristics of prehistoric pottery. Journal of Archaeological Method and Theory, 1, 259–304.

    Article  Google Scholar 

  • Okumura, M., & Araujo, A. G. (2014). Long-term cultural stability in hunter–gatherers: a case study using traditional and geometric morphometric analysis of lithic stemmed bifacial points from Southern Brazil. Journal of Archaeological Science, 45, 59–71.

    Article  Google Scholar 

  • Pelegrin, J. (2005). Remarks about archaeological techniques and methods of knapping. In V. Roux & B. Bril (Eds.), Stone Knapping: the Necessary Conditions for a Uniquely HomininBehaviour (pp. 23–33). Cambridge: McDonald Institute Monographs.

    Google Scholar 

  • Pepère, M. (1986). Apport de la typométrie à la definition des éclats Levallois: l'exemple d'Ault. Bulletin de la Société préhistorique française, 83, 115–118.

  • Picin, A., Vaquero, M., Weniger, G. C., & Carbonell, E. (2014). Flake morphologies and patterns of core configuration at the AbricRomaní rock-shelter: a geometric morphometric approach. Quaternary International, 350, 84–93.

    Article  Google Scholar 

  • Pool, C. A., & Britt, G. M. (2000). Ceramic perspective on the Formative to Classic transition in Southern Veracruz, Mexico. Latin American Antiquity, 11, 139–161.

    Article  Google Scholar 

  • Sandgathe, D. M. (2004). Alternative interpretation of the Levallois reduction technique. Lithic Technology, 29, 147–159.

    Google Scholar 

  • Schiffer, M. B., & Skibo, J. M. (1987). Theory and experiment in the study of technological change. Current Anthropology, 595–622.

  • Schlanger, N. (1996). Understanding Levallois: lithic technology and cognitive archaeology. Cambridge Archaeological Journal, 6, 231–254.

    Article  Google Scholar 

  • Skibo, J. M., & Schiffer, M. B. (2001). Understanding artifact variability and change: a behavioral framework. In M. B. Schiffer (Ed.), Perspectives on Technology (pp. 139–149). Albuquerque: University of New Mexico Press.

    Google Scholar 

  • Simão, J. (2002). Tools evolve: the artificial selection and evolution of Paleolithic stone tools. Behavioral and Brain Sciences, 25, 419.

    Article  Google Scholar 

  • Smith, R. A. (1911). A Palaeolithic industry at Northfleet, Kent. Archaeologica, 62, 512–532.

    Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry. Third Edition ed. W.H. Freeman & Co, New York.

  • Spurrell, F. C. J. (1884). On some Palaeolithic knapping tools and modes of using them. Journal of the Anthropological Institute, 13, 109–118.

    Google Scholar 

  • Tringham, R., Cooper, G., Odell, G., Voytek, B., & Whitman, A. (1974). Experimentation in the formation of edge damage. Journal of Field Archaeology, 1, 171–196.

    Article  Google Scholar 

  • Tryon, C. A., & Faith, J. T. (2013). Variability in the Middle Stone Age of eastern Africa. Current Anthropology, 54, S234–S254.

    Article  Google Scholar 

  • Turq, A. (1992). Raw material and technological studies of the Quina Mousterian in Perigord. In: Dibble H, Mellars P (eds) The Middle Paleolithic: adaptation, behavior, and variability. The University Museum, University of Pennsylvania, Philadelphia, pp 75–85.

  • Van Peer, P. (1992). The Levallois Reduction Strategy. Madison: Prehistory Press.

    Google Scholar 

  • White, J. P., & Thomas, D. H. (1972). What means these stones? Ethno-taxonomic models and archaeological interpretations in the New Guinea Highlands. In D. L. Clarke (Ed.), Models in archaeology (pp. 275–308). London: Duckworth Press.

    Google Scholar 

  • White, J. P., Modjeska, N., & Hipuya, I. (1977). Group definitions and mental templates: an ethnographic experiment. In R. V. S. Wright (Ed.), Stone tools as cultural markers. Change, evolution and complexity (pp. 380–390). Camberra: Australian Institute of Aboriginal Studies.

    Google Scholar 

  • Wilmsen, E. N. (1968). Functional analysis of flaked stone artefacts. American Antiquity, 33, 156–161.

    Article  Google Scholar 

  • Wurz, S. (2013). Technological trends in the Middle Stone Age of South Africa between MIS 7 and MIS 3. Current Anthropology, 54, S305–S319.

    Article  Google Scholar 

  • Wynn, T., & Coolidge, F. L. (2004). The expert Neandertal mind. Journal of Human Evolution, 46, 467–487.

    Article  Google Scholar 

  • Wynn, T., & Coolidge, F. L. (2010). How Levallois reduction is similar to, and not similar to, playing chess. In A. Nowell & I. Davidson (Eds.), Stone tools and the evolution of human cognition (pp. 83–103). Boulder: University Press of Colorado.

    Google Scholar 

Download references

Acknowledgments

We are grateful to Noreen von Cramon-Taubadel for assistance and comments on this paper. This research was conducted whilst MIE was on a Leverhulme Trust Early Career Fellowship. MIE is currently supported financially by a University of Missouri College of Arts and Sciences Post-Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Metin I. Eren or Stephen J. Lycett.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eren, M.I., Lycett, S.J. A Statistical Examination of Flake Edge Angles Produced During Experimental Lineal Levallois Reductions and Consideration of Their Functional Implications. J Archaeol Method Theory 23, 379–398 (2016). https://doi.org/10.1007/s10816-015-9245-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-015-9245-z

Keywords

Navigation