Skip to main content

Advertisement

Log in

Is Loading a Significantly Influential Factor in the Development of Lithic Microwear? An Experimental Test Using LSCM on Basalt from Olduvai Gorge

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Lithic microwear develops as a result of abrasive friction between a stone tool’s working edge and the surface of a worked material. Variation in the loading (i.e. force) applied to a stone tool during its use alters the amount of friction created between these two materials and should subsequently affect the level of any wear accrued. To date, however, no comprehensive account of the interaction between variable working loads and wear development has been undertaken. If such a relationship does exist, it may be possible to calculate the loading levels applied to stone tool artefacts during their use. Here, we use 30 basalt flakes knapped from raw materials collected in Olduvai Gorge, Tanzania, in a controlled experimental cutting task of standardized duration. Loading levels are recorded throughout with each flake being used with a predetermined load, ranging between 150 g and 4.5 kg. Laser scanning confocal microscopy (LSCM), coupled with the relative area (Srel) algorithm, is used to mathematically document the surface texture of the flakes to determine whether variation in loading does in fact significantly affect the amount of wear on the flake surfaces. Results indicate that working load does play a role in the development of lithic microwear; however, its interaction with other variables, including the naturally rough surface of basalt, may reduce the likelihood of its accurate determination on tools recovered from archaeological deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ackerly, N. W. (1978). Controlling pressure in experimental lithics research. American Antiquity, 43, 480–482.

    Article  Google Scholar 

  • Adams, J. L. (2014). Ground stone use-wear analysis: a review of terminology and experimental methods. Journal of Archaeological Science, 48, 129–138.

    Article  Google Scholar 

  • Álvarez, M., Fuentes, N. O., Favret, E. A., Dolce, M. V., & Forlano, A. (2012). Quantifying use-wear traces through RIMAPS and variogram analyses. Archaeological and Anthropological Sciences, 4, 91–101.

    Article  Google Scholar 

  • Anderson, P. (1980). A testimony of prehistoric tasks: diagnostic residues on stone tool working edges. World Archaeology, 12, 181–193.

    Article  Google Scholar 

  • Anderson, P., Astruc, L., Vargiolu, R., and Zahouani, H. (1998). Contribution of quantitative analysis of surface states to a multi-method approach for characterizing plant-processing traces on flint tools with gloss. In: Antoniazzi, A., Arsuaga Ferreres, J.L., Bermudez de Castro, J.M., Carbonell I Roura, E., Cavallini, E., Fontana, F., Gutiérrez Sàez, C., di Lernia, S., Longo, L., Manzi, G., Milliken, S., Oosterbeek, L., Pavukova, V., Peresani, M., Peretto, C., Pesce Delfino, V., Pizchelauri, K., Prati, L., and Sala I Ramos, R. (eds.) Functional analysis of lithic artefacts: current state of research. Proceedings of the XIII International Congress of the International Union of Prehistoric and Protohistoric Sciences. ABACO, Forli. Pp. 1121–1132

  • Anderson, P. C., Georges, J.-M., Vargiolu, R., & Zahouani, H. (2006). Insights from a tribological analysis of the tribulum. Journal of Archaeological Science, 33, 1559–1568.

    Article  Google Scholar 

  • ASME B46.1. (2009). Surface texture (surface roughness, waviness, and lay). New York: An American National Standard. American Society of Mechanical Engineers.

    Google Scholar 

  • Astruc, L., Vargiolu, R., Ben Tkaya, M., Balkan-Atlı, N., Özbaşaran, M., & Zahouani, H. (2011). Multi-scale tribological analysis of the technique of manufacture of an obsidian bracelet from Aşıklı Höyük (Aceramic Neolithic, Central Anatolia). Journal of Archaeological Science, 38, 3415–3424.

    Article  Google Scholar 

  • Atkins, T. (2009). The science and engineering of cutting: the mechanics and processes of separating, scratching and puncturing biomaterials, metals and non-metals. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Bamforth, D. B. (1988). Investigating microwear polishes with blind tests: the institute results in context. Journal of Archaeological Science, 15, 11–23.

    Article  Google Scholar 

  • Beyries, S. (1982). Comparaison des traces d’utilisation sur différentes roches siliceuses. In D. Cahen (Ed.), Tailler! Pour Quoi Faire: Préhistoire et Technologie Lithique II. Studia Praehistorica Belgica 2 (pp. 235–240). Tervuren: Musée royal de l’Afrique centrale.

    Google Scholar 

  • Bradley, R., & Clayton, C. (1987). The influence of flint microstructure on the formation of microwear polishes. In G. de G Sieveking & M. Newcomer (Eds.), The human uses of flint and chert: papers from the fourth international flint symposium (pp. 81–89). Cambridge: Cambridge University Press.

    Google Scholar 

  • Brown, C. A. (2013). Chapter 6: Areal fractal methods. In R. Leach (Ed.), Characterisation of areal surface texture (pp. 129–153). Berlin: Springer.

    Chapter  Google Scholar 

  • Brown, D. R. S., & Brown, C. A. (2010). Investigation of surface topography differences in native and exotic invertebrates in the St. Lawrence River. Scanning, 33, 250–255.

    Article  Google Scholar 

  • Brown, C. A., & Savary, G. (1991). Describing ground surface texture using contact profilometry and fractal analysis. Wear, 141, 211–226.

    Article  Google Scholar 

  • Brown, C. A., Johnsen, W. A., & Butland, R. M. (1996). Scale-sensitive fractal analysis of turned surfaces. Annual CIRP, 45, 515–518.

    Article  Google Scholar 

  • Cantor, G. C., & Brown, C. A. (2009). Scale-based correlations of relative areas with fracture of chocolate. Wear, 266, 609–612.

    Article  Google Scholar 

  • Carbonell, E., García-Antón, M., Mallol, C., Mosquera, M., Ollé, A., Rodríguez, X. P., Sahnouni, M., Sala, R., & Vergès, J. M. (1999). The TD6 level lithic industry from Gran Dolina, Atapuerca (Burgos, Spain): production and use. Journal of Human Evolution, 37, 653–693.

    Article  Google Scholar 

  • Chen, C., An, J., & Chen, H. (2010). Analysis of the Xiaonanhai lithic assemblage, excavated in 1978. Quaternary International, 211, 75–85.

    Article  Google Scholar 

  • Christensen, M. (1998). Processus de formation et characterisation physico-chimique des polis d’utilisation des outils er silex. Applications à la technologie préhistorique de l’ivoire. Bulletin de la Société Préhistorique Française, 95, 183–201.

    Article  Google Scholar 

  • Christensen, M., Walter, P., & Menu, M. (1992). Usewear characterisation of prehistoric flints with IBA. Nuclear Instruments and Methods in Physics Research B, 64, 488–493.

    Article  Google Scholar 

  • Czichos, H. (1978). Tribology: a systems approach to the science and technology of friction, lubrication, and wear: a systems approach to the science and technology of friction, lubrication, and wear. Amsterdam: Elsevier.

    Google Scholar 

  • de la Torre, I., Benito-Calvo, A., Arroyo, A., Zupancich, A., & Proffitt, T. (2013). Experimental protocols for the study of battered stone anvils from Olduvai Gorge (Tanzania). Journal of Archaeological Science, 40, 313–332.

    Article  Google Scholar 

  • Derndarsky, M., & Ocklind, G. (2001). Some preliminary observations on subsurface damage on experimental and archaeological quartz tools using CLSM and Dye. Journal of Archaeological Science, 28, 1149–1158.

    Article  Google Scholar 

  • Donahue, R. E., Murphy, M. L., & Robbins, L. H. (2004). Lithic microwear analysis of middle stone age artifacts from white paintings rock shelter, Botswana. Journal of Field Archaeology, 29, 155–163.

    Article  Google Scholar 

  • Evans, A. A. (2014). On the importance of blind testing in archaeological science: the example from lithic functional studies. Journal of Archaeological Science, 48, 5–14.

    Article  Google Scholar 

  • Evans, A. A., & Donahue, R. E. (2005). The elemental chemistry of lithic microwear: an experiment. Journal of Archaeological Science, 32, 1733–1740.

    Article  Google Scholar 

  • Evans, A. A., & Donahue, R. E. (2008). Laser scanning confocal microscopy: a potential technique for the study of lithic microwear. Journal of Archaeological Science, 35, 2223–2230.

    Article  Google Scholar 

  • Evans, A. A., & Macdonald, D. A. (2011). Using metrology in early prehistoric stone tool research: further work and a brief instrument comparison. Scanning, 33, 294–303.

    Article  Google Scholar 

  • Evans, A. A., Macdonald, D. A., Giusca, C. L., & Leach, R. K. (2014). New method development in prehistoric stone tool research: evaluating use duration and data analysis protocols. Micron, 65, 69–75.

    Article  Google Scholar 

  • Faulks, N. R., Kimball, L. R., Hidjrati, N., & Coffey, T. S. (2011). Atomic force microscopy of microwear traces on Mousterian tools from Myshtylagty Lagat (Weasel Cave), Russia. Scanning, 33, 304–315.

    Article  Google Scholar 

  • Fullagar, R. L. K. (1991). The role of silica in polish formation. Journal of Archaeological Science, 18, 1–24.

    Article  Google Scholar 

  • González-Urquijo, J. E., & Ibáñez-Estévez, J. J. (2003). The quantification of use-wear polish using image analysis. First results. Journal of Archaeological Science, 30, 481–489.

    Article  Google Scholar 

  • Grace, R. (1996). Use-wear analysis: the state of the art. Archaeometry, 38(2), 209–229.

    Article  Google Scholar 

  • Grace, R., Graham, I. D. G., & Newcomer, M. H. (1985). The quantification of microwear polishes. World Archaeology, 17, 112–120.

    Article  Google Scholar 

  • Hayden, B. (1979). Lithic use-wear analysis. New York: Academic.

    Google Scholar 

  • Homola, A. M., Israelachvili, J. N., McGuiggan, P. M., & Gee, M. L. (1990). Fundamental experimental studies in tribology: the transition from “interfacial” friction of undamaged molecularly smooth surfaces to “normal” friction with wear. Wear, 136, 65–83.

    Article  Google Scholar 

  • Hurcombe, L. (1997). The contribution of obsidian use-wear analysis to understanding the formation and alteration of wear. In A. Ramos-Millan & M. A. Bustillo (Eds.), Siliceous rocks and culture (pp. 487–497). Spain: Editorial Universidad de Granada.

    Google Scholar 

  • ISO 25178–2. (2012). Geometrical product specifications (GPS)—surface texture: areal—part 2: terms, definitions and surface texture parameters.

  • Jobson, R. W. (1986). Stone tool morphology and rabbit butchering. Lithic Technology, 15, 9–20.

    Google Scholar 

  • Jones, P. R. (1980). Experimental butchery with modern stone tools and its relevance for Palaeolithic archaeology. World Archaeology, 12, 153–165.

    Article  Google Scholar 

  • Jordan, S. E., & Brown, C. A. (2006). Comparing texture characterization parameters on their ability to differentiate ground polyethylene ski bases. Wear, 261, 398–409.

    Article  Google Scholar 

  • Keeley, L. H. (1980). Experimental determination of stone tool uses: a microwear analysis. Chicago: University of Chicago Press.

    Google Scholar 

  • Keeley, L. H., & Toth, N. (1981). Microwear polishes on early stone tools from Koobi Fora, Kenya. Nature, 293, 464–465.

    Article  Google Scholar 

  • Key, A. J. M. (2013). Applied force as a determining factor in lithic use-wear accrual: an experimental investigation of its validity as a method with which to infer hominin upper limb biomechanics. Lithic Technology, 38(1), 32–45.

    Article  Google Scholar 

  • Key, A. J. M., & Lycett, S. J. (2011). Technology based evolution? A biometric test of the effects of handsize versus tool form in an experimental cutting task. Journal of Archaeological Science, 38, 1663–1670.

    Article  Google Scholar 

  • Key, A. J. M., & Lycett, S. J. (2014a). Are bigger flakes always better? An experimental assessment of flake size variation on cutting efficiency and loading. Journal of Archaeological Science, 41, 140–146.

    Article  Google Scholar 

  • Key, A. J. M., & Lycett, S. J. (2014b). Edge angle as a variably influential factor in flake cutting efficiency: an experimental investigation of its relationship with tool size and loading. Archaeometry. doi:10.1111/arcm.12140.

    Google Scholar 

  • Kimball, L. R., Kimball, J. F., & Allem, P. E. (1995). Microwear polishes as viewed through the atomic force microscope. Lithic Technology, 20, 6–28.

    Google Scholar 

  • Kimball, L., Allen, P., Kimball, J., Schlichting, B., and Phan, K. (1998). The analysis of microwear polishes with the atomic force microscope. In: Antoniazzi, A., Arsuaga Ferreres, J.L., Bermudez de Castro, J.M., Carbonell I Roura, E., Cavallini, E., Fontana, F., Gutiérrez Sàez, C., di Lernia, S., Longo, L., Manzi, G., Milliken, S., Oosterbeek, L., Pavukova, V., Peresani, M., Peretto, C., Pesce Delfino, V., Pizchelauri, K., Prati, L., and Sala I Ramos, R. (eds.) Functional analysis of lithic artefacts: current state of research. Proceedings of the XIII International Congress of the International Union of Prehistoric and Protohistoric Sciences. ABACO, Forli. Pp. 11121–1132

  • Leakey, M. D. (1971). Olduvai Gorge. Vol 3. Excavations in beds I and II, 1960–1963. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lemorini, C., Stiner, M. C., Gopher, A., Shimelmitz, R., & Barkai, R. (2006). Use-wear analysis of an Amudian laminar assemblage from the Acheuleo-Yabrudian of Qesem Cave, Israel. Journal of Archaeological Science, 33, 921–934.

    Article  Google Scholar 

  • Lerner, H. J. (2014). Intra-raw material variability and use-wear formation: an experimental examination of a Fossiliferous chert (SJF) and Silicified Wood (YSW) from NW New Mexico using clemex vision processing frame. Journal of Archaeological Science, 48, 34–45.

    Article  Google Scholar 

  • Lerner, H., Du, X., Costopoulos, A., & Ostoja-Starzewski, M. (2007). Lithic raw material physical properties and use-wear accrual. Journal of Archaeological Science, 34, 711–722.

    Article  Google Scholar 

  • Lerner, H. J., Dytchkowskyj, D., and Nielsen, C. (2010). Raw material variability, use-wear accrual rates and addressing the ambiguity of some use-wear traces: an example from northwestern New Mexico. Rivista di Scienze Preistoriche, 313–333.

  • Lewenstein, S. (1987). Stone tool use at Cerros: the ethnoarchaeological use-wear analysis. Austin: University of Texas Press.

    Google Scholar 

  • Lipson, C., & Seth, N. J. (1973). Statistical design and analysis of engineering experiments. New York: McGraw-Hill.

    Google Scholar 

  • Macdonald, D. A. (2014). The application of focus variation microscopy for lithic use-wear quantification. Journal of Archaeological Science, 48, 26–33.

    Article  Google Scholar 

  • Masson, A., Coqueugniot, E., & Roy, S. (1981). Silice et traces d’usage: le lustre des faucilles. Nouvelles Archives Museum d’Histoire Naturelle de Lyon, 19, 43–51.

    Google Scholar 

  • Mecholsky, J. J., & Mackin, T. J. (1988). Fractal analysis of fracture in Ocala chert. Journal of Material Science Letters, 7, 1145–1147.

    Article  Google Scholar 

  • Meeks, N. D., de G Sieveking, G., Tite, M. S., & Cook, J. (1982). Gloss and use-wear traces on flint sickles and similar phenomena. Journal of Archaeological Science, 9, 317–340.

    Article  Google Scholar 

  • Miller, G. L. (2013). Illuminating activities at Paleo Crossing (33ME274) through microwear analysis. Lithic Technology, 38, 97–108.

    Google Scholar 

  • Moller, G. F., & Swisher, C. C., III. (2012). The Ngorongoro Volcanic Highland and its relationships to volcanic deposits at Olduvai Gorge and East African Rift volcanism. Journal of Human Evolution, 63, 274–283.

    Article  Google Scholar 

  • Myshkin, N. K., Petrokovets, M. I., & Kovalev, A. V. (2005). Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribology International, 38, 910–921.

    Article  Google Scholar 

  • Newcomer, M., Grace, R., & Unger-Hamilton, R. (1986). Investigating microwear polishes with blind tests. Journal of Archaeological Science, 13, 203–217.

    Article  Google Scholar 

  • Odell, G. H. (2001). Stone tool research at the end of the millennium: classification, function, and behaviour. Journal of Archaeological Research, 9, 45–100.

    Article  Google Scholar 

  • Ollé, A., & Vergès, J. M. (2008). SEM functional analysis and the mechanism of microwear formation. Prehistoric Technology, 40, 39–49.

    Google Scholar 

  • Ollé, A., & Vergès, J. M. (2014). The use of sequential experiments and SEM in documenting stone tool microwear. Journal of Archaeological Science, 48, 60–72.

    Article  Google Scholar 

  • Rees, D., Wilkinson, G. G., Grace, R., & Orton, C. R. (1991). An investigation into the fractal properties of flint microwear images. Journal of Archaeological Science, 18, 629–640.

    Article  Google Scholar 

  • Rots, V. (2013). Insights into early Middle Palaeolithic tool use and hafting in Western Europe. The functional analysis of level 11a of the early Middle Palaeolithic site of Biache-Saint-Vaast (France). Journal of Archaeological Science, 40, 497–506.

    Article  Google Scholar 

  • Sano, K. (2012). Functional variability in the Magdalenian of north-western Europe: a lithic microwear analysis of the Gönnersdorf K-11 assemblage. Quaternary International, 272–273, 264–274.

    Article  Google Scholar 

  • Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., & Walker, A. (2005). Dental microwear texture analysis shows within-species diet variability in fossil hominins. Nature, 436, 693–695.

    Article  Google Scholar 

  • Seeman, M. F., Loebel, T. J., Comstock, A., & Summers, G. L. (2013). Working with Wilmsen: Paleoindian End Scraper design and use at Nobles Pond. American Antiquity, 78, 407–432.

    Article  Google Scholar 

  • Semenov, S. (1950). O protivostavenii bol’shogo pal’tsa ruki Neanderthal’skogo cheloveka. Sovetskaya Etnografya, 11, 70–82.

    Google Scholar 

  • Semenov, S. (1964). Prehistoric technology. London: Cory, Adams and Mackay.

    Google Scholar 

  • Shea, J. J. (1992). Lithic microwear analysis in archaeology. Evolutionary Anthropology, 1, 143–150.

    Article  Google Scholar 

  • Sheppard, C. J. R., & Shotton, D. M. (1997). Confocal laser scanning microscopy. Oxford: BIOS.

    Google Scholar 

  • Smallwood, A.M. (2013). Building experimental use-wear analogues for Clovis biface functions. Archaeological and Anthropological Sciences, 1–14.

  • Šmit, Z., Petru, S., Grime, G., Vidmar, T., Budnar, M., Zorko, B., & Ravnikar, M. (1998). Usewear-induced deposition on prehistoric flint tools. Nuclear Instruments and Methods in Physics Research B, 140, 209–216.

    Article  Google Scholar 

  • Šmit, Z., Grime, G. W., Petru, S., & Rajta, I. (1999). Microdistribution and composition of usewear polish on prehistoric stone tools. Nuclear Instruments and Methods in Physics Research B, 150, 565–570.

    Article  Google Scholar 

  • Stemp, W. J. (2014). A review of quantification of lithic use-wear using laser profilometry: a method based on metrology and fractal analysis. Journal of Archaeological Science, 48, 15–25.

    Article  Google Scholar 

  • Stemp, W. J., & Chung, S. (2011). Discrimination of surface wear on obsidian tools using LSCM and RelA: pilot study results (area-scale analysis of obsidian tool surfaces). Scanning, 33, 279–293.

    Article  Google Scholar 

  • Stemp, W. J., & Stemp, M. (2001). UBM laser profilometry and lithic use-wear analysis: a variable length scale investigation of surface topography. Journal of Archaeological Science, 28, 81–88.

    Article  Google Scholar 

  • Stemp, W. J., & Stemp, M. (2003). Documenting stages of polish development on experimental stone tools: surface characterization by fractal geometry using UBM laser profilometry. Journal of Archaeological Science, 30(3), 287–296.

    Article  Google Scholar 

  • Stemp, W. J., Childs, B. E., Vionnet, S., & Brown, C. A. (2008). The quantification of microwear on chipped stone tools: assessing the effectiveness of root mean square roughness (Rq). Lithic Technology, 33, 173–189.

    Google Scholar 

  • Stemp, W. J., Childs, B. E., Vionnet, S., & Brown, C. A. (2009). Quantification and discrimination of lithic use-wear: surface profile measurements and length-scale fractal analysis. Archaeometry, 51, 366–382.

    Article  Google Scholar 

  • Stemp, W. J., Childs, B. E., & Vionnet, S. (2010). Laser profilometry and length-scale analysis of stone tools: second series experiment results. Scanning, 32, 233–243.

    Article  Google Scholar 

  • Stemp, W.J., Evans, A.A. and Lerner, H.J. (2012). Reaping the rewards: the potential of well designed methodology, a comment on Vardi et al. (Journal of Archeological Science 37 (2010) 1716–1724) and Goodale et al. (Journal of Archeological Science 37 (2010) 1192–1201). Journal of Archeological Science, 39, 1901–1904

  • Stemp, W. J., Lerner, H. J., & Kristant, E. H. (2013). Quantifying microwear on experimental Mistassini quartzite scrapers: preliminary results of exploratory research using LSCM and scale-sensitive fractal analysis. Scanning, 35, 28–39.

    Article  Google Scholar 

  • Stemp, W. J., Andruskiewicz, M. D., Gleason, M. A., & Rashid, Y. H. (2014). Experiments in ancient maya blood-letting: quantification of surface wear on obsidian blades. Archaeological and Anthropological Sciences. doi:10.1007/s12520-014-0204-5.

    Google Scholar 

  • Stevens, N. E., Harro, D. R., & Hicklin, A. (2010). Practical quantitative lithic use-wear analysis using multiple classifiers. Journal of Archaeological Science, 37, 2671–2678.

    Article  Google Scholar 

  • Tringham, R., Cooper, G., Odell, G. H., Voytek, B., & Whitman, A. (1974). Experimentation in the formation of edge-damage: a new approach to lithic analysis. Journal of Field Archaeology, 1, 171–196.

    Article  Google Scholar 

  • Unger, P. S., Brown, C. A., Bergstrom, T. S., & Walker, A. (2003). Quantification of dental microwear by tandem scanning confocal microscopy and scale-sensitive fractal analyses. Scanning, 25, 185–193.

    Article  Google Scholar 

  • Unger-Hamilton, R. (1984). The formation of use-wear polish on flint: beyond the “deposit versus abrasion” controversy. Journal of Archaeological Science, 11, 91–98.

    Article  Google Scholar 

  • Vaughan, P. (1985). Use wear analysis of flaked stone tools. Arizona: University of Arizona Press.

    Google Scholar 

  • Yamada, S. (1993). The formation process of “use-wear polishes”. In P. Amderson, S. Beyries, M. Otte, & H. Plisson (Eds.), Traces et Function: Les Gestes Retrouvés (pp. 447–457). Liege: Eraul.

    Google Scholar 

  • Zang, B., Liu, X., Brown, C. A., & Bergstrom, T. S. (2002). Micro-grinding of nanostructured material coatings. Annual CIRP, 51, 251–254.

    Article  Google Scholar 

Download references

Acknowledgments

Collection of raw materials from Olduvai Gorge Olduvai Gorge was authorized by COSTECH and Department of Antiquities, Tanzania, and funded by the European Research Council—Starting Grants (ORACEAF: 283366). AJMK is supported through a 50th Anniversary Research Scholarship provided by the University of Kent. We thank Dr. Christopher A. Brown, Director of the Surface Metrology Lab, Department of Mechanical Engineering, Worcester Polytechnic Institute, for access to the Olympus LEXT OLS4000 LSCM and use of their modal filter and Sfrax software (Surfract.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair J. M. Key.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Key, A.J.M., Stemp, W.J., Morozov, M. et al. Is Loading a Significantly Influential Factor in the Development of Lithic Microwear? An Experimental Test Using LSCM on Basalt from Olduvai Gorge. J Archaeol Method Theory 22, 1193–1214 (2015). https://doi.org/10.1007/s10816-014-9224-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-014-9224-9

Keywords

Navigation