Skip to main content

Advertisement

Log in

Factors Controlling Pre-Columbian and Early Historic Maize Productivity in the American Southwest, Part 1: The Southern Colorado Plateau and Rio Grande Regions

Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Maize is the New World’s preeminent grain crop and it provided the economic basis for human culture in many regions within the Americas. To flourish, maize needs water, sunlight (heat), and nutrients (e.g., nitrogen). In this paper, climate and soil chemistry data are used to evaluate the potential for dryland (rain-on-field) agriculture in the semiarid southeastern Colorado Plateau and Rio Grande regions. Processes that impact maize agriculture such as nitrogen mineralization, infiltration of precipitation, bare soil evaporation, and transpiration are discussed and evaluated. Most of the study area, excepting high-elevation regions, receives sufficient solar radiation to grow maize. The salinities of subsurface soils in the central San Juan Basin are very high and their nitrogen concentrations are very low. In addition, soils of the central San Juan Basin are characterized by pH values that exceed 8.0, which limit the availability of both nitrogen and phosphorous. In general, the San Juan Basin, including Chaco Canyon, is the least promising part of the study area in terms of dryland farming. Calculations of field life, using values of organic nitrogen for the upper 50 cm of soil in the study area, indicate that most of the study area could not support a 10-bushel/acre crop of maize. The concepts, methods, and calculations used to quantify maize productivity in this study are applicable to maize cultivation in other environmental settings across the Americas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Arbuscular mycorrhizal fungi can greatly increase the absorbing surface area of the root, especially in terms of P adsorption. The fungal hyphae can slightly increase the effective volume of the root cone in that the hyphae can extend between 3 and 7 cm beyond the P depletion zone that normally develops within the root cone (Rakshit and Bhadoria 2008).

  2. A map showing the locations of weather stations in the study area is shown in ESM Fig. 1.

  3. A map showing the locations of soil pedons in the study area is shown in ESM Fig. 2.

References

  • Abdul-Jabbar, A. S., Sammin, J. W., Lugg, D. G., Kallsen, C. E., & Smeal, D. (1983). Water use by alfalfa, maize, and barley as influenced by available soil water. Agricultural Water Management, 6, 351–363.

    Article  Google Scholar 

  • Adams, K. R. (2004). Anthropogenic ecology of the North American Southwest. In P. E. Minnis (Ed.), People and plants in ancient western North America (pp. 167–204). Washington: Smithsonian Books.

    Google Scholar 

  • Adams, D. K., & Comrie, A. C. (1997). The North American monsoon. Bulletin of the American Meteorology Society, 78, 2197–2213.

    Article  Google Scholar 

  • Adams, K. R., Muenchrath, D. A., & Schwindt. (1999). Moisture effects on the morphology of ears, cobs, and kernels on a South-western U.S. maize (Zea Mays L.) cultivar, and implications for the interpretation of archaeological maize. Journal of Archaeological Science, 26, 483–496.

    Article  Google Scholar 

  • Adams, K. R., Meegan, C. M., Ortman, S. G., Howell, R. E., Werth, L. C., Muenchrath, D. A., et al. (2006). MAIS (Maize of American Indigenous Societies) Southwest: Ear descriptions and traits that distinguish 27 morphologically distinct groups of 123 historic USDA maize (Zea mays L. spp. Mays) accessions and data relevant to archaeological subsistence models. http://spectre.nmsu.edu (projects and results, collaborative MAIS Experiment).

  • Aleksandrovskii, A. L. (2007). Pyrogenic origin of carbonates: Evidence from pedoarchaeological investigations. Eurasian Soil Science, 40, 471–477.

    Article  Google Scholar 

  • Allen, R. G., Pruitt, W. O., Raes, D., Smith, M., & Pereira, L. S. (2005). Estimating evaporation from bares soil and the crop coefficient for the initial period using common soils information. Journal of Irrigation and Drainage Engineering, 131, 14–23.

    Article  Google Scholar 

  • Allison, F. E. (1955). The enigma of nitrogen balance sheets. Advances in Agronomy, 7, 213–250.

    Article  Google Scholar 

  • Amos, B., & Walters, D. T. (2006). Maize root biomass and net rhizodeposited carbon: An analysis of the literature. Soil Science of America Journal, 70, 1489–1503.

    Article  Google Scholar 

  • Arrhenius, O. (1963). Investigation of soil from old Indian sites. Ethnos, 28, 122–136.

    Article  Google Scholar 

  • Ayers, R. S. (1977). Quality of water for irrigation. Journal of Irrigation and Drainage Division, 103, 135–154.

    Google Scholar 

  • Barber, A. S., & Olson, R. A. (1968). Fertilizer use on corn, changing patterns in agriculture. In L. B. Nelson & M. H. McVickar (Eds.), Changing patterns in fertilizer use (pp. 168–188). Madison: Soil Science Society of America.

    Google Scholar 

  • Beaglehole, E. (1937). Notes on Hopi economic life. Yale University Publication in Anthropology 15, Yale University Press, New Haven.

  • Bear, F. E., & Royston, J. R. (1919). Nitrogen losses in urine. Journal of the American Society of Agronomy, 11, 319–326.

    Google Scholar 

  • Bellorado, B. A. (2007). Breaking down the models: Reconstructing prehistoric subsistence agriculture in the Durango District of Southwestern Colorado. Unpublished M.A. dissertation, Department of Anthropology, Northern Arizona University, Flagstaff.

  • Belnap, J. (2002). Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils, 35, 128–135.

    Article  Google Scholar 

  • Below, F. E. (2002). Nitrogen metabolism and crop productivity. In M. Pessarlakli (Ed.), Handbook of plant and crop physiology (2nd ed., pp. 385–406). Boca Raton: CRC.

    Google Scholar 

  • Benoit, G. R., & Kirkham, D. (1963). The effect of soil surface conditions on evaporation of soil water. Soil Science Society of America Proceedings, 27, 495–498.

    Article  Google Scholar 

  • Benson, L. V., & White, J. W. C. (1994). Stable isotopes of oxygen and hydrogen in the Truckee River–Pyramid Lake surface-water system. 3. Sources of water vapor overlying Pyramid Lake. Limnology and Oceanography, 39, 1945–1958.

    Article  Google Scholar 

  • Benson, L. V., & Berry, M. S. (2009). Climate change and cultural response in the prehistoric American Southwest. Kiva, 75, 89–119.

    Google Scholar 

  • Benson, L., Petersen, K., & Stein, J. (2007). Anasazi (pre-Columbian Native-American) migrations during the middle-12th and late-13th centuries—Were they drought induced? Climatic Change, 83, 187–213.

    Article  Google Scholar 

  • Benz, B. F. (2001). Archaeological evidence of teosinte domestication from Guila Naquitz, Oaxaca. Proceedings of the National Academy of Sciences, 98, 2104–2106.

    Article  Google Scholar 

  • Benz, B. F., Cheng, L., Leavitt, S. W., & Eastoe, C. (2006). El Riego and early maize agricultural evolution. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 73–82). New York: Elsevier.

    Chapter  Google Scholar 

  • Berg, B., McClaugherty, C., Virzo de Santo, A., & Johnson, D. (2001). Humus buildup in boreal forests—Effects of litter fall and its N concentration. Canadian Journal of Forestry Research, 31, 988–998.

    Article  Google Scholar 

  • Berzok, L. M. (2005). American Indian food. Santa Barbara: Greenwood Publishing Group.

    Google Scholar 

  • Biswas, T. D., Nielsen, D. R., & Biggar, J. W. (1966). Redistribution of soil water after infiltration. Water Resources Research, 2, 513–524.

    Article  Google Scholar 

  • Blackmer, A. M., Pottker, D., Cerrato, M. E., & Webb, J. (1989). Correlations between soil nitrate concentrations in late spring and corn fields in Iowa. Journal of Production Agriculture, 2, 103–109.

    Google Scholar 

  • Blackmer, A. M., Voss, R. D., & Mallarino, A. P. (1997). Nitrogen fertilizer recommendations for Corn in Iowa. Iowa State University Extension Publication Pm-1714. Ames, Iowa.

  • Blake, M. (2006). Dating the initial spread of Zea Mays. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 55–72). New York: Elsevier.

    Chapter  Google Scholar 

  • Boehm, H. P. (1971). Acidic and basic properties of hydroxylated metal oxide surfaces. Discussions of the Faraday Society, 52, 264–275.

    Article  Google Scholar 

  • Boone, R. D. (1994). Light-fraction soil organic matter: Origin and contribution to net nitrogen mineralization. Soil Biology and Biochemistry, 26, 1459–1468.

    Article  Google Scholar 

  • Borza, I. (2008). Study regarding the weeds influence on water use efficiency in maize crop from the Crisurilor Plain. Anaele Universitatii din Oradea, Fascicula: Protectia Mediului XIII, pp. 20–25.

  • Bradfield, M. (1971). The changing pattern of Hopi agriculture. Royal Anthropological Institute Occasional Paper No. 30.

  • Brady, N. C., & Weil, R. R. (2008). The nature and properties of soils, 14th ed.. Columbus: Pearson Prentice Hall.

    Google Scholar 

  • Brandt, C. B. (1995). Traditional agriculture on the Zuni reservation in the recent historic period. In W. Toll (Ed.), Soil, water, biology, and belief in prehistoric and traditional Southwestern agriculture (pp. 291–301). Albuquerque: New Mexico Archaeological Council Special Publication No. 2.

    Google Scholar 

  • Bremmer, J. M. (1965). Nitrogen availability indexes. In C. A. Black (Ed.), Methods of soil analysis, part 2. Agronomy Monograph 9 (pp. 1324–1345). Madison: Soil Science Society of America.

    Google Scholar 

  • Breshears, D. D., Cobb, N. S., Rich, P. M., Price, K. P., Allen, C. D., Balice, R. G., et al. (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences, 102, 15144–15148.

    Article  Google Scholar 

  • Brown, D. P., & Comrie, A. C. (2002). Sub-regional seasonal precipitation linkages to SOI and PDO in the Southwest United States. Atmospheric Science Letters, 3, 94–102.

    Article  Google Scholar 

  • Brown, W. L., Anderson, E. G., & Tuchawena, R., Jr. (1952). Observations on three varieties of Hopi maize. American Journal of Botany, 39, 597–609.

    Article  Google Scholar 

  • Bundy, L. G., & Meisinger. (1994). Nitrogen availability indices. In R. W. Weaver (Ed.), Methods of soil analysis, part 2. Book Series 5 (pp. 951–984). Madison: Soil Science Society of America.

    Google Scholar 

  • Byrne, P. F., Terpstra, K. A., Dabbert, T. A., & Alexander, R. (2003). Estimating pollen-mediated flow in corn under Colorado conditions. Annual Meeting Abstracts of the Soil Science Society of America Annual Meeting, Madison, Wisconsin.

  • Cattlenetwork (2008). http://www.cattlenetwork.com/Top-10—Countries-With-The-Most-Corn-Production/2008-03-17/Article.aspx?oid=62054.

  • Cerrato, M. E., & Blackmer, A. M. (1990). Effects of nitrapyrin on corn yields and recovery of ammonium-N at 18 site-years in Iowa. Journal of Production Agriculture, 3, 513–521.

    Google Scholar 

  • Chapin, F. S., III, Matson, P. A., & Mooney, H. A. (2002). Principles of terrestrial ecosystem ecology. New York: Springer.

    Google Scholar 

  • Choriki, R. T., Hide, J. C., Krall, S. L., & Brown, B. L. (1964). Rock and gravel mulch aid in moisture storage. Crops and Soil, 16, 24.

    Google Scholar 

  • Clarholm, M. (1985). Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biology and Biochemistry, 17, 181–187.

    Article  Google Scholar 

  • Clark, S. P. (1928). Lessons from Southwestern Indian agriculture. College of Agriculture, Experimental Station Bulletin 125. University of Arizona, Tucson.

  • Clay, D. E., Clapp, C. E., Reese, C., Liu, Z., Carlson, C. G., Woodward, H., et al. (2007). Carbon-13 fractionation of relic soil organic carbon during mineralization effects calculated half-lives. Soil Science Society of America Journal, 71, 1003–1009.

    Article  Google Scholar 

  • Coltrain, J. B., Janetski, J. C., & Carlyle, S. W. (2006). The stable- and radio-isotope chemistry of Eastern Basketmaker and Pueblo Groups in the Four Corners region of the American Southwest: Implications for Anasazi diets, origins, and abandonments in Southwestern Colorado. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 275–287). New York: Academic Press.

    Chapter  Google Scholar 

  • Coltrain, J. B., Janetski, J. C., & Carlyle, S. W. (2007). The stable- and radio-isotope chemistry of Western Basketmaker burials: Implications for early Puebloan diets and origins. American Antiquity, 72, 301–321.

    Article  Google Scholar 

  • Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., & Stahle, D. W. (2004). Long-term aridity changes in the Western United States. Science, 306, 1015–1018.

    Article  Google Scholar 

  • Corral, J. A. R., Puga, N. D., González, J. J. S., Parra, J. R., Eguiarte, D. R. G., Holland, J. B., et al. (2008). Climatic adaptation and ecological descriptors of 42 Mexican maize races. Crop Science, 48, 1502–1512.

    Article  Google Scholar 

  • Cushing, F. H. (1920). Zuni breadstuff. Indian notes and monographs, volume 2. New York: Museum of the American Indian, Heye Foundation.

  • D’arrigo, R., Villalba, R., & Wiles, G. (2001). Tree-ring estimates of pacific decadal climate variability. Climate Dynamics, 18, 219–224.

    Article  Google Scholar 

  • Dahnke, W. C., & Johnson, G. V. (1990). Testing soils for available nitrogen. In R. L. Westerman (Ed.), Soil testing and plant analysis (3rd ed., pp. 97–114). Madison: Soil Science Society of America.

    Google Scholar 

  • DeLoughery, R., & Wortmann, C. (2005). Calculating the value of manure for crop production. University of Nebraska-Lincoln Extension, Institute of Agriculture and Natural Resources NebGuide G9330.

  • Derby, N. E., Steelea, D. D., Terpstraa, J., Knighton, R. E., & Caseya, F. X. M. (2005). Interactions of nitrogen, weather, soil, and irrigation on corn yield. Agronomy Journal, 97, 1342–1351.

    Article  Google Scholar 

  • Dietz, T., Abdirizak, N. N., Roba, A. W., & Zaal, F. (2001). Pastor commercialization: On caloric terms of trade and related issues. In M. A. M. Salih, T. Dietz, & A. G. M. Ahmed (Eds.), African pastorialism: Conflict, institutions, and government (pp. 194–234). London: Pluto.

    Google Scholar 

  • DiMarco, O. N., Aello, M. S., & Chicatun, A. (2007). Effect of irrigation on corn plant dry matter yield, morphological components and ruminal degradability of leaves and stems. Journal of Animal and Veterinary Advances, 6, 8–11.

    Google Scholar 

  • Doerge, T. A. (1985). A summary of soil test information for Arizona’s surface agricultural soils. University of Arizona Cooperative Extension Service Report No. 8613.

  • Dominguez, S., & Kolm, K. (2005). Beyond water harvesting: A soil hydrology perspective on traditional Southwestern agricultural technology. American Antiquity, 70, 732–765.

    Article  Google Scholar 

  • Dwyer, L. M., Ma, B. L., Stewart, D. W., Hayhoe, H. N., Bachin, D., Culley, J. L. B., et al. (1996). Root mass distribution under conventional and conservation tillage. Canadian Journal of Soil Science, 76, 23–28.

    Google Scholar 

  • Elmore, R., & Abendroth, L. (2008). Seeding rates in relation to maximum yield and seed cost. Iowa State University Agronomy Extension, Integrated Crop Management Extension Newsletter. http://www.agronext.iastate.edu/corn/production/management/planting/yield.html.

  • Enfield, D. B., Mestas-Nunez, A. M., & Trimble, P. J. (2001). The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the Continental U.S. Geophysical Research Letters, 28, 2077–2080.

    Article  Google Scholar 

  • Esrey, S. A., Andersson, I, Hillers, A., & Sawyer, R. (2000). Closing the loop, ecological sanitation for food security. Swedish International Development Cooperation Agency, Publications on Water Resources No. 18.

  • Ethanol Statistics (2008). cta.ornl.gov/bedb/biofueils/ethanol/Ethanol_Production_Statistics.xls.

  • Euler, R. C. (1954). Environmental adaptation at Sia Pueblo. Human Organization, 12, 27–30.

    Google Scholar 

  • Evans, R. D., & Ehleringer, J. R. (1993). A break in the nitrogen cycle in arid lands? Evidence from δ15N of soils. Oecologia, 94, 314–317.

    Article  Google Scholar 

  • Fang, C., Smith, P., Moncrieff, J. B., & Smith, J. U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57–59.

    Article  Google Scholar 

  • Farnham, D. (2001). Corn planting guide. Iowa State University Extension Publication PM 1885.

  • Fehrenbacher, J. B., & Rust, R. H. (1956). Corn root penetration in soils derived from various textures of Wisconsin-age glacial till. Soil Science, 82, 369–378.

    Article  Google Scholar 

  • Ferguson, T. J., & Hart, E. R. (1985). A Zuni Atlas. Norman: University of Oklahoma Press.

    Google Scholar 

  • Follett, R. F., Paul, E. A., Leavitt, S. W., Halvorson, A. D., Lyon, D., & Peterson, G. A. (1997). Carbon isotope ratios of Great Plains soils and in wheat–fallow systems. Soil Science Society of American Journal, 61, 1068–1077.

    Article  Google Scholar 

  • Ford, R. I. (1985). Zuni land use and damage to Trust land, Plaintiff’s Exhibit 7000. Expert testimony submitted to the United States Claims Court as evidence in the case Zuni Indian Tribe v. United States, Docket 327-81L, August 15, 1985.

  • Ford, R. I. (1987). Dating early maize in the eastern United States. Paper presented at the Annual Meeting of the American Association for the Advancement of Science, February 14–18, 1987, Chicago.

  • Forde, C. D. (1931). Hopi agriculture and land ownership. Journal of the Royal Anthropological Institute, 41, 357–405.

    Google Scholar 

  • Foth, H. D., & Ellis, B. G. (1988). Soil fertility. New York: Wiley.

    Google Scholar 

  • Fowler, D. B., & Brydon, J. (1989). No-till winter wheat production on the Canadian prairies: Placement of urea and ammonium nitrate fertilizers. Agronomy Journal, 81, 518–524.

    Article  Google Scholar 

  • Fox, R. H., Roth, G. W., Iversen, K. V., & Piekielek, W. P. (1989). Soil and tissue test compared for predicting soil nitrogen availability to corn. Agronomy Journal, 81, 971–974.

    Article  Google Scholar 

  • Fye, J. K., Stahle, D. W., & Cook, E. R. (2003). Paleoclimatic analogs to twentieth-century moisture regimes across the United States. Bulletin of the American Meteorological Society, 84, 901–909.

    Article  Google Scholar 

  • Gallais, A., & Coque, M. (2005). Genetic variation and selection for nitrogen use efficiency in maize: A synthesis. Maydica, 50, 531–537.

    Google Scholar 

  • Gardner, F. P., Pearce, R. B., & Mitchell, R. L. (1985). Physiology of crop plants. Ames: Iowa State University Press.

    Google Scholar 

  • Gauthier, R., & Herhahn, C. (2005). Why would anyone want to farm here? In R. P. Powers (Ed.), The peopling of Bandelier (pp. 27–34). Santa Fe: School of American Research Press.

    Google Scholar 

  • Gray, S. T., Graumlich, L. J., Betancourt, J. L., & Pedersen, G. T. (2004). A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since a.d. 1567. Geophysical Research Letters, 31, L12205.

    Article  Google Scholar 

  • Hack, J. T. (1942). The changing physical environment of the Hopi Indians of Arizona. Papers of the Peabody Museum 35. Cambridge: Harvard University Press.

  • Hallauer, A. R., & Troyer, A. F. (1972). Prolific corn hybrids and minimizing risk of stress. In D. Wilkinson (Ed.), Proceedings of the 27th Annual Corn and Sorghum Research Conference (pp. 140–158). Washington: American Seed Trade Association.

    Google Scholar 

  • Harmsen, G. W., & Van Schreven, D. A. (1955). Mineralization of organic nitrogen in soil. Advances in Agronomy, 7, 299–398.

    Article  Google Scholar 

  • Harrison, K. G., Broecker, W. S., & Bonani. (1993). The effect of changing land use on soil radiocarbon. Science, 262, 725–726.

    Article  Google Scholar 

  • Hay, R. E., Earley, E. B., & DeTurk, E. E. (1953). Concentration and translocation of nitrogen compounds in the corn plant (Zea Mays) during grain development. Plant Physiology, 28, 606–621.

    Article  Google Scholar 

  • Haynes, R. J., Martin, R. J., & Goh, K. M. (1993). Nitrogen fixation, accumulation of soil nitrogen and nitrogen balance for some field-grown legume crops. Field Crops Research, 35, 85–92.

    Article  Google Scholar 

  • Hergert, G. W. (1987). Status of residual nitrate-nitrogen soil tests in the United States. In: J. R. Brown (Ed.), Soil testing: Sampling, correlation, calibration, and interpretation (pp. 73–88). Madison, Wisconsin: American Society of Agronomy Special Publication 21, Soil Science Society of America.

  • Herrmann, A. (2003). Predicting nitrogen mineralization from soil organic matter—A chimera? Unpublished PhD dissertation, Swedish University of Agricultural Sciences, Uppsala.

  • Hesterman, O. B., Russelle, M. P., Sheaffer, C. C., & Heichel, G. H. (1987). Nitrogen utilization from fertilizer and legume residues in legume–corn rotations. Agronomy Journal, 79, 726–731.

    Article  Google Scholar 

  • Hillel, D. (1971). Soil and water: Physical principles and processes. New York: Academic.

    Google Scholar 

  • Hodge, F. W. (1946). Spanish explorers in the southern United States, 1528–1543. New York: Barnes and Noble.

    Google Scholar 

  • Hoeft, R. G., & Peck, T. R. (2002). Soil testing and fertility. In R. G. Hoeft & E. Nafziger (Eds.), The Illinois agronomy handbook (pp. 91–131). Urbana-Champaign: University of Illinois Extension.

    Google Scholar 

  • Homaee, M., Feddes, R. A., & Dirksen, C. (2002). A macroscopic water extraction model for nonuniform transient salinity and water stress. Soil Science Society of American Journal, 66, 1764–1772.

    Article  Google Scholar 

  • Homburg, J. A. (2000). Anthropogenic influences on American Indian agricultural soils of the Southwestern United States. Unpublished PhD dissertation, Department of Agronomy, Iowa State University, Ames.

  • Homburg, J. A., Sandor, J. A., & Norton, J. B. (2005). Anthropogenic influences on Zuni agricultural soils. Geoarchaeology, 20, 661–693.

    Article  Google Scholar 

  • Hooker, T. D., & Stark, J. M. (2008). Soil C and N cycling in three semiarid vegetation types: Response to an in situ pulse of plant debris. Soil Biology & Biochemistry, 40, 2678–2685.

    Article  Google Scholar 

  • Hsieh, Y. P. (1993). Radiocarbon signature of turnover rates in active soil organic pools. Soil Science Society of America Journal, 57, 1020–1022.

    Article  Google Scholar 

  • Huckell, L. W. (2006). Ancient maize in the American Southwest: What does it look like and what can it tell us? In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 97–108). New York: Elsevier.

    Google Scholar 

  • Huntrieser, H., Schlager, H., Feigl, C., & Höller, H. (1998). Transport and production of NO x in electrified thunderstorms: survey of previous studies and new observations at midlatitudes. Journal of Geophysical Research, 103, 28247–28264.

    Article  Google Scholar 

  • Jaeger, C. H., Monson, R. K., Fisk, M. C., & Schmidt, S. K. (1999). Seasonal partitioning of nitrogen and soil microorganisms in an alpine ecosystem. Ecology, 80, 1883–1891.

    Article  Google Scholar 

  • Jaenicke-Despres, V. R., & Smith, B. D. (2006). Ancient DNA and the integration of archaeological and genetic approaches to the study of maize domestication. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 83–95). New York: Elsevier.

    Chapter  Google Scholar 

  • Jalota, S. K., & Prihar, S. S. (1986). Effects of atmospheric evaporativity, soil type, and redistribution time on evaporation from bare soil. Australian Journal of Soil Research, 24, 357–366.

    Article  Google Scholar 

  • Jarvis, S. C., Stockdale, E. A., Shepherd, M. A., & Powlson, D. S. (1996). Nitrogen mineralization in temperate agricultural soils: Processes and measurement. Advances in Agronomy, 57, 187–235.

    Article  Google Scholar 

  • Jastrow, J. D., & Miller, R. M. (1998). Soil aggregate stabilization and carbon sequestration: Feedbacks through organo-mineral associations. In R. Lal, J. M. Kimball, R. F. Follett, & B. A. Stewart (Eds.), Soil processes and the carbon cycle (pp. 207–223). Boca Raton: CRC.

    Google Scholar 

  • Jastrow, J. D., Amonette, J. E., & Baily, V. L. (2007). Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80, 5–23.

    Article  Google Scholar 

  • Jenkins, M. T. (1941). Influence of climate and weather on growth of corn. In G. Hambidge (Ed.), Climate and man, Yearbook of Agriculture, 1941 (pp. 308–341). Washington: U.S. Department of Agriculture.

    Google Scholar 

  • Jenkinson, D. S. (1990). The turnover of organic carbon and nitrogen in soil. Philosophical Transactions of the Royal Society of London B, 329, 361–368.

    Article  Google Scholar 

  • Jenkinson, D. S., & Rayner, J. H. (1977). The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 123, 298–305.

    Article  Google Scholar 

  • Johnson, G. A., Hoverstad, T. R., & Greenwald, R. E. (1998). Integrated weed management using narrow corn spacing, herbicides and cultivation. Agronomy Journal, 90, 40–46.

    Article  Google Scholar 

  • Kerr, R. A. (2000). A North Atlantic climate pacemaker for the centuries. Science, 288, 1984–1986.

    Article  Google Scholar 

  • Lang, C. H., & Riley, C. L. (1966). The Southwestern journals of Adolph F. Bandelier, 1880–1882. Albuquerque: University of New Mexico Press.

    Google Scholar 

  • Latshaw, J. W., & Miller, E. C. (1924). Elemental composition of the corn plant. Journal of Agricultural Research, 27, 845–861.

    Google Scholar 

  • Leavitt, S. W., Follett, R. F., & Paul, E. A. (1996). Estimation of slow- and fast-cycling soil organic pools from 6 N HCL hydrolysis. Radiocarbon, 38, 231–239.

    Google Scholar 

  • Leirós, M. C., Trasar-Cepeda, C., Seoane, S., & Gil-Sotres. (1999). Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry, 31, 327–335.

    Article  Google Scholar 

  • Leonard, W. H., Brandon, J. F., & Curtis, J. J. (1940). Corn production in Colorado. Fort Collins: Colorado Experiment Station Bulletin 463.

    Google Scholar 

  • Lerner, B. L. (2000). Wood ash in the garden. http://www.hort.purdue.edu/ext/woodash.html.

  • Li, J. (2009). Production, breeding and process of maize in China. In J. L. Bennetzen & S. C. Hake (Eds.), Handbook of maize: Its biology (pp. 563–576). New York: Springer.

    Chapter  Google Scholar 

  • Lieth, H. (1975). Modeling the primary productivity of the world. In H. Lieth & R. H. Whittaker (Eds.), Primary productivity of the biosphere, vol. 14 (pp. 237–263). New York: Springer.

    Google Scholar 

  • Lightfoot, D. R. (1990). The prehistoric pebble-mulched fields of the Galisteo Anasazi: Agricultural innovation and adaptation to environment. Unpublished PhD dissertation, University of Colorado, Boulder.

  • Lightfoot, D. R., & Eddy, F. W. (1994). The agricultural utility of lithic-mulch gardens: Past and present. GeoJournal, 34(4), 425–437.

    Google Scholar 

  • Lindemann, W. C., & Glover, C. R. (2003). Nitrogen fixation by legumes. New Mexico Cooperative Extension Service Guide A-129.

  • Lindquist, J. L., Arkebauer, T. J., Walters, D. T., Cassman, K. G., & Dobermann, A. (2005). Maize radiation use efficiency under optimal growth conditions. Agronomy Journal, 97, 72–78.

    Article  Google Scholar 

  • Lindsay, W. L. (1979). Chemical equilibria in soils. New Jersey: Blackburn.

    Google Scholar 

  • Linsley, B. K., Wellington, G. M., & Schrag, D. P. (2000). Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 a.d.. Science, 290, 1145–1148.

    Article  Google Scholar 

  • Lloyd, J., & Taylor. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315–323.

    Article  Google Scholar 

  • Lorenz, K., Lal, R., & Shipitalo, M. J. (2006). Stabilization of organic carbon in chemically separated pools in no-till and meadow soils in Northern Appalachia. Geoderma, 137, 205–211.

    Article  Google Scholar 

  • Ludwig, J. A. (1987). Primary productivity in arid lands: Myths and realities. Journal of Arid Environments, 13, 1–7.

    Google Scholar 

  • MacDonald, G. M., & Case, R. A. (2005). Variations in the Pacific Decadal Oscillation over the past millennium. Geophysical Research Letters, 32(L08703), 4.

    Google Scholar 

  • MacDowell, M. (1919). Report on the Zuni Reservation, New Mexico. Manuscript on file with the Zuni Archaeology Program, Zuni, New Mexico.

  • Machinet, G. E., Bertrand, I., Chabbert, B., Watteau, F., Villemin, G., & Recous, S. (2009). Soil biodegradation of maize root residues: Interaction between chemical characteristics and the presence of colonizing micro-organisms. Soil Biology & Biochemistry, 41, 1253–1261.

    Article  Google Scholar 

  • Magdoff, F. D., Ross, D., & Amadon, J. (1984). A soil test for nitrogen availability to corn. Soil Science Society of America Journal, 48, 1301–1304.

    Article  Google Scholar 

  • Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society, 78, 1069–1079.

    Article  Google Scholar 

  • Martel, Y. A., & Paul, E. A. (1974). The use of radiocarbon dating of organic matter in the study of soil genesis. Soil Science Society of America Proceedings, 38, 501–506.

    Article  Google Scholar 

  • Martin, J. P., & Haider, K. (1986). Influence of mineral colloids on turnover rates of soil organic carbon. In P. M. Huang & M. Schnitzer (Eds.), Interactions of soil minerals with natural organics and microbes (pp. 283–304). Madison: Soil Science Society of America Special Publication 17.

    Google Scholar 

  • Masse, W. B. (1980). Excavations at Gu Achi: A reappraisal of Hohokam settlement and subsistence in the Arizona Papagueria. Publications in Anthropology No. 12, Western Archaeological Center, Tucson.

  • Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, J., Buckler, E., & Doebly, J. (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences, 99, 6080–6084.

    Article  Google Scholar 

  • Mattson, S., & Pugh, A. J. (1934). The electrokinetics of hydrous oxides and their anionic exchange. Soil Science, 38, 299–313.

    Article  Google Scholar 

  • Matula, S. (2003). The influence of tillage treatments on water infiltration into soil profile. Plant and Soil Environment, 49, 298–306.

    Google Scholar 

  • McCabe, G. J., Palecki, M. A., & Betancourt, J. L. (2004). Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proceedings of the National Academy of Sciences, 101, 4136–4141.

    Article  Google Scholar 

  • McDonald, J. (1956). Variability of precipitation in an arid region: A survey of characteristics for Arizona. Technical report on the meteorology and climatology of Arid Regions 1. The Institute of Atmospheric Physics, University of Arizona, Tucson.

  • Mengü, G. P., & Özgürel, M. (2008). An evaluation of water-yield relations in Maize (Zea mays L.) in Turkey. Pakistan Journal of Biological Sciences, 11, 517–524.

    Article  Google Scholar 

  • Miller, E. L., Meeuwig, R. O., & Budy, J. D. (1981). Biomass of singleleaf pinyon and Utah juniper. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experimental Station Research Paper INT-273.

  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society Series B, 281, 277–294.

    Article  Google Scholar 

  • Morgan, P. (2007). Toilets that make compost: Low-cost sanitary toilets that produce valuable compost for crops in an African context. Stockholm Environment Institute EcoSanRes Programme, Stockholm, Sweden. http://www.ecosanres.org/pdffiles/ToiletsThatMakeCompost.pdf.

  • Morote, C. G. B., Vidor, C., & Mendes, N. G. (1990). Alterações na temperatura do solo pela cobertura morta e irrigação. Revista Brasileirade Ciência do Solo, 18, 81–84.

    Google Scholar 

  • Mortvedt, J. J., Westfall, D. G., & Croissant, R. L. (2007). Fertilizing corn. Colorado State University Extension Publication No. 0.538, Fort Collins, Colorado.

  • Muchow, R. C., Sinclair, T. R., & Bennett, J. M. (1990). Temperature and solar radiation effects on potential maize yield across locations. Agronomy Journal, 82, 338–343.

    Article  Google Scholar 

  • Muenchrath, D. A., & Salvador, R. J. (1995). Maize productivity and agroecology: Effects of environment and agricultural practices on the biology of maize. In H. W. Toll (Ed.), Soil, water, biology, and belief in prehistoric and traditional southwestern agriculture (pp. 303–333). Albuquerque: New Mexico Archaeological Council Special Publication No. 2.

    Google Scholar 

  • Muenchrath, D. A., Kuratomi, M., Sandor, J. A., & Homburg, J. A. (2002). Observational study of maize production in semiarid New Mexico. Journal of Ethnobiology, 22, 1–33.

    Google Scholar 

  • Müller, A. G. (2001). Modelagem da matéria seca e do rendimento de grãos de hilho em relacão à disponibilidade hidrica. Porto Alegre: Tese Doutorado em Fitotecnia.

    Google Scholar 

  • Myrold, D. D. (1998). Microbial nitrogen transformations. In D. M. Sylvia, J. J. Fuhrmann, P. G. Hartel, & D. A. Zuberer (Eds.), Principles and applications of soil microbiology (pp. 259–294). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Nabhan, G. P. (1984). Soil fertility renewal and water harvesting in Sonoran Desert agriculture: The Papago example. Arid Lands Newsletter, 20, 21–28.

    Google Scholar 

  • Nafziger, E. D. (2002). Corn. In R. Hoeft & E. D. Nafziger (Eds.), Illinois agronomy handbook. University of Illinois Department of Crop Sciences (pp. 22–34). Urbana: University of Illinois.

    Google Scholar 

  • Nakamoto, T. (1989). Development of rooting zone in corn plant. Japanese Journal of Crop Science, 58, 648–652.

    Google Scholar 

  • Nesbitt, S. W., Zhang, R., & Orville, R. E. (2000). Seasonal and global NO x production by lightning estimated from the optical transient detector (OTD). Tellus, 52B, 1206–1215.

    Google Scholar 

  • Ni, F., Cavazos, T., Hughes, M. K., Comrie, A. C., & Funkhouser, G. (2002). Cool-season precipitation in the southwestern USA since ad 1000: Comparison of linear and nonlinear techniques for reconstruction. International Journal of Climatology, 22, 1645–1662.

    Article  Google Scholar 

  • Norman, J. M., & Arkebauer, T. J. (1991). Predicting canopy photosynthesis and light use efficiency from leaf characteristics. In K. J. Boote & R. S. Loomis (Eds.), Modeling crop photosynthesis—From biochemistry to canopy (pp. 75–94). Madison: Crop Science Society of America Special Publication 19.

    Google Scholar 

  • Norton, J. M., & Firestone, M. K. (1991). Metabolic status of bacteria and fungi in the rhizosphere of ponderosa pine seedlings. Applied and Environmental Microbiology, 57, 1161–1167.

    Google Scholar 

  • Norton, E. R., & Silvertooth, J. C. (1998). Field determination of permanent wilting point. In J. C. Silvertooth (Ed.), Cotton, a College of Agriculture Report Series P-112 (pp. 230–237). Tucson: University of Arizona College of Agriculture and Life Sciences, Cooperative Extension Publication No. AZ1006.

    Google Scholar 

  • Norton, J. B., Sandor, J. A., & White, C. S. (2003). Hillslope soils and organic matter dynamics within a Native American agroecosystems on the Colorado Plateau. Soil Science Society of America Journal, 67, 225–234.

    Article  Google Scholar 

  • Norton, J. B., Sandor, J. A., & White, C. S. (2007a). Runoff and sediments from Hillslope soils within a Native American agroecosystem. Soil Science Society of America Journal, 71, 476–483.

    Article  Google Scholar 

  • Norton, J. B., Sandor, J. A., White, C. S., & Laahty, V. (2007b). Organic matter transformations through arroyos and alluvial fan soils within a Native American agroecosystem. Soil Science Society of America Journal, 71, 829–835.

    Article  Google Scholar 

  • Noy-Meir, I. (1973). Desert ecosystems: Environment and producers. Annual Review of Ecological Systems, 4, 25–52.

    Article  Google Scholar 

  • Odend’hal, S. (1993). Intermediary agricultural energetics: A case study of solar energy linkage with Chinese working cattle. Agriculture, Ecosystems, and Environment, 43, 217–233.

    Article  Google Scholar 

  • Oregon Climate Service (2009). http://www.ocs.orst.edu/pub/maps/Precipitation/Total/.

  • Parnes, R. (1990). Fertile soil, a grower’s guide to organic and inorganic fertilizers. Davis: AgAccess.

    Google Scholar 

  • Parton, W. J., Stewart, J. W. B., & Cole, C. V. (1988). Dynamics of C, N, P, and S in grassland soils: A model. Biogeochemistry, 5, 109–131.

    Article  Google Scholar 

  • Parton, W. J., Scurolci, M. D., Ojima, D. S., Gilmanor, T. G., Scholos, R. J., Schimel, D. S., et al. (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome world wide. Global Biogeochemical Cycles, 7, 785–809.

    Article  Google Scholar 

  • Paul, E. A., Horwath, W. R., Harris, D., Follett, R., Leavitt, S., Kimball, B. A., et al. (1995). Establishing the pool sizes and fluxes of CO2 emissions from soil organic matter turnover. In R. J. Lal, J. Kimble, E. Levine, & B. A. Stewart (Eds.), Soils and global change (pp. 297–308). Boca Raton: Lewis.

    Google Scholar 

  • Paul, E. A., Follett, R. F., Leavitt, S. W., Halvorson, A., Peterson, G. A., & Lyons, D. J. (1997). Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Science Society of America Journal, 61, 1058–1067.

    Article  Google Scholar 

  • Paul, E. A., Collins, H. P., & Leavitt, S. W. (2001). Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma, 104, 239–256.

    Article  Google Scholar 

  • Paul, E. A., Morris, S. J., Conant, R. T., & Plante, A. F. (2006). Does the acid hydrolysis–incubation method measure meaningful soil organic carbon pools? Soil Science Society of America Journal, 70, 1023–1035.

    Article  Google Scholar 

  • Petersen, K. L. (1986), Climate reconstruction for the Dolores Project area. In D. A. Breternitz, C. K. Robinson, & G. T. Gross (Compilers), Dolores Archaeological Program: Final Synthetic Report (pp. 311–331). Denver: United States Department of the Interior, Bureau of Reclamation Engineering and Research Center.

  • Pierzynski, G. M. (2000). Methods of phosphorous analysis for soils, sediments, residuals, and waters. Manhattan, Kansas: Southern Cooperative Series Bulletin No. 396.

  • Piperno, D. R., & Flannery, K. V. (2001). The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proceedings of the National Academy of Sciences, 98, 2101–2103.

    Article  Google Scholar 

  • Pordesimo, L. O., Edens, W. C., & Sokhansanj, S. (2004). Distribution of aboveground biomass in corn stover. Biomass and Bioenergy, 26, 337–343.

    Article  Google Scholar 

  • Porter, E., Tonnessen, K., Sherwell, J., & Grant, R. (2000). Nitrogen in the nation’s rain. NADP Brochure 2000-01C (revised). http://nadp.sws.uiuc.edu/lib/brochures/nitrogen.pdf.

  • Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: Processes and potential. Global Change Biology, 6, 317–327.

    Article  Google Scholar 

  • Prevost, D. J., Ahrens, R. J., & Kriz, D. M. (1984). Traditional Hopi agricultural methods. Journal of Soil and Water Conservation, 39, 170–171.

    Google Scholar 

  • Price, C., Penner, J., & Prather, M. (1997). NO x from lightning. 1. Global distribution based on lightning physics. Journal of Geophysical Research, 102, 5929–5941.

    Article  Google Scholar 

  • Qin, R., Stamp, P., & Richner, W. (2006). Impact of tillage on maize rooting in a Cambisol and Luvisol in Switzerland. Soil & Tillage Research, 85, 50–61.

    Article  Google Scholar 

  • Raison, R. J., Khanna, P. K., & Woods, P. V. (1985). Mechanisms of element transfer to the atmosphere during vegetation fires. Canadian Journal of Forest Research, 15, 132–140.

    Article  Google Scholar 

  • Rakshit, A., & Bhadoria, P. (2008). Measurement of arbuscular mycorrhizal hyphal length and prediction of P influx by mechanistic model. World Journal of Agricultural Sciences, 4, 23–27.

    Google Scholar 

  • Ranney, R. W. (1969). An organic carbon–organic matter conversion equation for Pennsylvania surface soils. Soil Science Society of America Journal, 33, 809–811.

    Article  Google Scholar 

  • Rao, D. L. N., & Batra, L. (1983). Ammonia volatilization from applied nitrogen in alkali soils. Plant Soil, 70, 219–228.

    Article  Google Scholar 

  • Rasmussen, P. E., Douglas, C. L., Jr., Collins, H. P., & Albrecht, S. L. (1998). Long-term cropping system effects on mineralizable nitrogen in soil. Soils Biology and Biochemistry, 30, 1829–1837.

    Article  Google Scholar 

  • Rauch, W., Brockmann, D., Peters, I., Larsen, T. A., & Gujer, W. (2003). Combining urine separation with waste design: An analysis using a stochastic model for urine production. Water Research, 37, 681–689.

    Article  Google Scholar 

  • Reddy, K. S., Mills, H. A., & Jones, J. B., Jr. (1991). Corn responses to post-tasseling nitrogen deprivation and to various ammonium/nitrate ratios. Agronomy Journal, 83, 201–203.

    Article  Google Scholar 

  • Risse, M. (2002). Best management practices for wood ash as agricultural soil amendment. http://hubcap.clemson.edu/∼blpprt/bestwoodash.html.

  • Rose, D. A. (1968). Water movement in porous materials III: Evaporation of water from soil. British Journal of Applied Physics, 1, 1779–1791.

    Google Scholar 

  • Runge, E. C. A. (1968). Effects of rainfall and temperature interactions during the growing season on corn yield. Agronomy Journal, 60, 503–507.

    Article  Google Scholar 

  • Sala, O. E., Parton, W. J., Joyce, L. A., & Lauenroth, W. K. (1988). Primary production of the central grassland region of the United States. Ecology, 69, 40–45.

    Article  Google Scholar 

  • Salton, J. C., & Mielniczuk, J. (1995). Relações entre sistemas de preparo, temperatura e umidade de um podzólico vermelho-escuro de Eldorado do Sul (RS). Revista Brasileira de Ciência do Solo, 19, 313–2319.

    Google Scholar 

  • Salvador, R. J. (1997). The maize page. http://www.biologie.uni-hamburg.de/b-online/library/maize/www.ag.iastate.edu/departments/agronomy/.maizearticle.html.

  • Sandor, J. A. (1995). Searching soil for clues about Southwest prehistoric agriculture. In H. W. Toll (Ed.), Soil, water, biology, and belief in prehistoric and traditional Southwestern Agriculture (pp. 119–137). Albuquerque: New Mexico Archaeological Council Special Publication No. 2.

    Google Scholar 

  • Sandor, J. A., & Gersper, P. L. (1988). Evaluation of soil fertility in some prehistoric agricultural terraces in New Mexico. Agronomy Journal, 80, 846–850.

    Article  Google Scholar 

  • Sandor, J. A., Norton, J. B., Homburg, J. A., Muenchrath, D. A., White, C. S., Williams, S. E., et al. (2007). Biogeochemical studies of a Native American runoff agroecosystem. Geoarchaeology, 22, 359–386.

    Article  Google Scholar 

  • Sawyer, J. E., & Mallarino, A. P. (2007). Nutrient removal when harvesting corn stover. Iowa State University Extension Integrated Crop Management Newsletter IC-498, pp. 251–253. Ames: Iowa State Agronomy Extension.

  • Sawyer, J. E., Mallarino, A. P., Killorn, R., & Barnhart, S. K. (2008). A general guide for crop nutrient and limestone recommendations in Iowa. Iowa State University Extension PM 1688. http://www.extension.iastate.edu/Publications/PM1688.pdf.

  • Schroeder, J. J., Neeteson, J. J., Oenema, O., & Stuik, P. C. (2000). Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crops Research, 66, 151–164.

    Article  Google Scholar 

  • Schubert, S. D., Suarez, M. J., Pegion, P. J., Koster, R. D., & Bacmeister, J. T. (2004). On the cause of the 1930s dust bowl. Science, 303, 1855–1859.

    Article  Google Scholar 

  • Shaw, R. H. (1988). Climate requirement. In G. F. Sprague & J. W. Dudley (Eds.), Corn and corn improvement, 3rd ed. (pp. 609–638). Madison: American Society of Agronomy.

    Google Scholar 

  • Shinners, K. J., & Binversie, B. N. (2007). Fractional yield and moisture of corn stover biomass produced in the northern US Corn Belt. Biomass & Energy, 31, 576–584.

    Article  Google Scholar 

  • Silveira, M. L., Comerford, N. B., Reddy, K. R., Cooper, W. T., & El-Rifai, H. (2008). Characterization of soil organic carbon pools by acid hydrolysis. Geoderma, 144, 405–414.

    Article  Google Scholar 

  • Sinclair, T. R., & Muchow, R. C. (1999). Radiation use efficiency. Advances in Agronomy, 65, 215–265.

    Article  Google Scholar 

  • Smith, R. (2004). Nitrogen dynamics in woody plant ecosystems: Almond orchards, winegrape vineyards, and pinyon–juniper woodlands. Unpublished PhD dissertation, University of California, Davis.

  • Soleri, D., & Smith, S. E. (1995). Morphological and phonological comparisons of two Hopi maize varieties conserved in situ and ex situ. Economic Botany, 49, 56–77.

    Article  Google Scholar 

  • Sommer, S. G., Olesen, J. E., & Christensen, B. T. (1991). Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. Journal of Agricultural Science, 117, 91–100.

    Article  Google Scholar 

  • Soudi, B., Sbai, A., & Chiang, C. N. (1990). Nitrogen mineralization in semiarid soils of Morocco: Rate constant variation with depth. Soil Science Society of America Journal, 54, 756–761.

    Article  Google Scholar 

  • Stephen, A. M. (1936). Hopi journal of Alexander Stephen. In E. C. Parsons (Ed.), Columbia University contribution to anthropology series 23. New York: Columbia University Press.

    Google Scholar 

  • Stevenson, M. C. (1915). Ethnobotany of the Zuni Indians: Annual report (1908–1909). Bureau of American Ethnology 30 (pp. 35–102). Washington: Smithsonian Institution.

  • Stewart, G. R. (1940). Conservation in Pueblo agriculture. Scientific Monthly, 56(201–220), 329–340.

    Google Scholar 

  • Stuart, J. W. (1990). Maize use by rural Mesoamerican households. Human Organization, 49, 135–139.

    Google Scholar 

  • Stott, E., Kassin, G., Jarrell, W. M., Martin, J. P., & Haider, K. (1983). Stabilization and incorporation into biomass of specific plant carbons during biodegradation in soil. Plant and Soil, 70, 15–26.

    Article  Google Scholar 

  • Swift, M. J., Heal, O. W., & Anderson, J. M. (1979). Decomposition in terrestrial ecosystems. Studies in ecology, vol. 5. Oxford: Blackwell Scientific.

    Google Scholar 

  • Ta, C. T., & Weiland, R. T. (1992). Nitrogen partitioning in maize during ear development. Crop Science, 32, 443–451.

    Article  Google Scholar 

  • Taiz, L., & Zeiger, E. (2002). Plant physiology. Sunderland: Sinauer.

    Google Scholar 

  • Thomison, P. (2009). Managing “pollen drift” to minimize contamination on non-GMO corn. Ohio State University Extension Fact Sheet AGF-153-04. Columbus: Ohio State.

  • Thompson, L. M. (1969). Weather and technology in the production of corn in the U.S. Corn Belt. Agronomy Journal, 61, 453–456.

    Article  Google Scholar 

  • Tie, X., Zhang, R., Brasseur, G., & Lie, W. (2002). Global NO x production by lightning. Journal of Atmospheric Chemistry, 43, 61–74.

    Article  Google Scholar 

  • Timmons, D. R., & Cruse, R. M. (1990). Effect of fertilization method and tillage on nitrogen-15 recovery by corn. Agronomy Journal, 82, 777–784.

    Article  Google Scholar 

  • Tisdale, S., Nelson, W. L., & Beaton, J. D. (1985). Soil fertility and fertilizers, 4th ed.. New York: Macmillan.

    Google Scholar 

  • Todd, R. W., Klocke, N. L., Hergert, G. W., & Parkhurst, A. M. (1991). Evaporation from soil influenced by crop shading, crop residue, and wetting regime. Transactions of the American Society of Agricultural and Biological Engineers, 34, 461–466.

    Google Scholar 

  • Underhill, R. M. (1946). Work a day life of the Pueblos. Indian life and customs 4. Phoenix: U.S. Office of Indian Affairs, Phoenix Indian School.

  • U.S. Department of Agriculture (2009). Soils data. http://soils.usda.gov/.

  • U.S. Patent Application 20040126460 (2004). Nutritional mineral supplements from plant ash. http://www.freepatentsonline.com/y2004/0126460.html.

  • Van Epps, G. A., Barker, J. R., & McKell, C. M. (1982). Energy biomass from large rangeland shrubs of the Intermountain United States. Journal of Range Management, 35, 22–25.

    Article  Google Scholar 

  • Vierra, B. J., & Ford, R. I. (2006). Early maize agriculture in the northern Rio Grande Valley, New Mexico. In J. E. Staller, R. H. Tykot, & B. F. Benz (Eds.), Histories of maize (pp. 497–510). New York: Elsevier.

    Chapter  Google Scholar 

  • Vinneras, B. (2002). Possibilities for sustainable nutrient recycling by faecal separation combined with urine diversion. Agraria 353, Acta Universitatis Agriculturae Sueciae, Uppsala: Swedish University of Agricultural Sciences.

  • Waksman, S. A., & Gerretsen, F. C. (1931). Influence of temperature and moisture upon the nature and extent of decomposition of plant residues by microorganisms. Ecology, 12, 33–60.

    Article  Google Scholar 

  • Wang, Y., DeSilva, A. W., Goldenbaum, G. C., & Dickerson, R. R. (1998). Nitric oxide production by simulated lightning: Dependence on current, energy and pressure. Journal of Geophysical Research, 103, 19149–19160.

    Article  Google Scholar 

  • Wang, W. J., Smith, C. J., Chalk, P. M., & Chen, D. (2001). Evaluating chemical and physical indices of nitrogen mineralization capacity with an unequivocal reference. Soil Science Society of America Journal, 65, 368–376.

    Article  Google Scholar 

  • Weaver, J. E. (1926). Root development of field crops. London: McGraw-Hill.

    Google Scholar 

  • West, N. E. (1990). Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. Advances in Ecological Research, 20, 179–223.

    Article  Google Scholar 

  • West, N. E. (1991). Nutrient cycling in soils of semiarid and arid regions. In J. Skujins (Ed.), Semi-arid lands and deserts: Soil resource and reclamation (pp. 295–332). New York: Mercel Dekker.

    Google Scholar 

  • Western Regional Climate Center (2009). http://www.wrcc.dri.edu/.

  • Westgate, M. E., Otegui, M. E., & Andrade, F. H. (2004). Physiology of the corn plant. In C. W. Smith, J. Betran, & E. C. A. Burnge (Eds.), Corn: Origin history, technology, and production (pp. 235–272). New York: Wiley Series in Crop Science, Wiley.

    Google Scholar 

  • White, C. S., & Thomas, C. J. (1999). Nitrogen contributions from precipitation to a corn field at Zuni, New Mexico. Paper presented at the Annual Meeting of the American Society of Agronomy.

  • Williams, M. A., Rice, C. W., & Owensby, C. E. (2000). Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant Soil, 227, 127–137.

    Article  Google Scholar 

  • Wilson, L. G., & Artiola, J. F. (2004). Soil and vadose zone sampling. In J. F. Artiola, I. L. Pepper, & M. Brusseau (Eds.), Environmental monitoring and characterization (pp. 103–120). Burlington: Elsevier Academic.

    Google Scholar 

  • Woodbury, R. B. (1961). Prehistoric agriculture at Point of Pines. Arizona: Memoirs of the Society for American Archaeology. 17.

    Google Scholar 

  • Wymer, D. A. (1992). Trends and disparities: The Woodland paleoethnobotanical record of the Mid-Ohio Valley. In M. F. Seeman (Ed.), Cultural variability in context: Woodland settlements of the Mid-Ohio Valley (pp. 65–76). Kent: Kent State University Press MCJA Special Paper No. 7.

    Google Scholar 

  • Zibilske, L. M., & Materon, L. A. (2005). Biochemical properties of decomposing cotton and corn stem and root residues. Soil Science Society of America Journal, 69, 378–386.

    Article  Google Scholar 

  • Zou, X. M., Ruan, H. H., Fu, Y., Yang, X. D., & Sha, L. Q. (2005). Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure. Soil Biology & Biochemistry, 37, 1923–1928.

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Dave Meko and Jeffrey Dean at the University of Arizona for access to some of the tree-ring data sets used in this paper. Dwayne Westfall at Colorado State University provided data on corn production for the state of Colorado. This study is based, in part, upon research supported by the National Science Foundation under grant No. DEB-0816400 and by the Arid Regions Climate Project in the National Research Program of the U.S. Geological Survey. This work supports the Village Ecodynamics Project whose objectives include agent-based modeling of the interactions between prehistoric Native Americans who occupied the Four Corners region of the American Southwest, the landscape they occupied, and the climate that impacted the region during the late-thirteenth century. Reviews of an earlier version of this manuscript were ably performed by Richard Smith and Keith Lucey of the U.S. Geological Survey and by Kenneth Peterson of the University of Utah. My appreciation also to three anonymous reviewers whose comments strengthened this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry V. Benson.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Weather station location map. (GIF 13 kb)

High resolution image (TIFF 12982 kb)

Supplementary Fig. 2

Soil pedon location map. (GIF 14 kb)

High resolution image (TIFF 13129 kb)

Supplementary Table 1

(XLS 91 kb)

Supplementary Table 2

(XLS 438 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, L.V. Factors Controlling Pre-Columbian and Early Historic Maize Productivity in the American Southwest, Part 1: The Southern Colorado Plateau and Rio Grande Regions. J Archaeol Method Theory 18, 1–60 (2011). https://doi.org/10.1007/s10816-010-9082-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-010-9082-z

Keywords

Navigation