Skip to main content
Log in

LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

High frequency of aneuploidy in meiosis and cleavage stage coincides with waves of epigenetic genome reprogramming that may indicate a possible association between epigenetic mechanisms and aneuploidy occurrence. This study aimed to assess the methylation level of the long interspersed repeat element 1 (LINE-1) retrotransposon in chorionic villi of first trimester miscarriages with a normal karyotype and aneuploidy.

Methods

The methylation level was assessed at 19 LINE-1 promoter CpG sites in chorionic villi of 141 miscarriages with trisomy of chromosomes 2, 6, 8–10, 13–15, 16, 18, 20–22, and monosomy X using massive parallel sequencing.

Results

The LINE-1 methylation level was elevated statistically significant in chorionic villi of miscarriages with both trisomy (45.2 ± 4.3%) and monosomy X (46.9 ± 4.2%) compared with that in induced abortions (40.0 ± 2.4%) (p < 0.00001). The LINE-1 methylation levels were specific for miscarriages with different aneuploidies and significantly increased in miscarriages with trisomies 8, 14, and 18 and monosomy X (p < 0.05). The LINE-1 methylation level increased with gestational age both for group of miscarriages regardless of karyotype (R = 0.21, p = 0.012) and specifically for miscarriages with trisomy 16 (R = 0.48, p = 0.007). LINE-1 methylation decreased with maternal age in miscarriages with a normal karyotype (R = − 0.31, p = 0.029) and with trisomy 21 (R = − 0.64, p = 0.024) and increased with paternal age for miscarriages with trisomy 16 (R = 0.38, p = 0.048) and monosomy X (R = 0.73, p = 0.003).

Conclusion

Our results indicate that the pathogenic effects of aneuploidy in human embryogenesis can be supplemented with significant epigenetic changes in the repetitive sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Edmonds DK, Lindsay KS, Miller JF, Williamson E, Wood PJ. Early embryonic mortality in women. Fertil Steril. 1982;38:447–53.

    CAS  PubMed  Google Scholar 

  2. Eiben B, Bartels I, Bahr-Porsch S, Borgmann S, Gatz G, Gellert G, et al. Cytogenetic analysis of 750 spontaneous abortions with the direct-preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage. Am J Hum Genet. 1990;47:656–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Menasha J, Levy B, Hirschhorn K, Kardon NB. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med. 2005;7:251–63.

    PubMed  Google Scholar 

  4. Pendina AA, Efimova OA, Chiryaeva OG, Tikhonov AV, Petrova LI, Dudkina VS, et al. A comparative cytogenetic study of miscarriages after IVF and natural conception in women aged under and over 35 years. J Assist Reprod Genet. 2014;31:149–55.

    PubMed  Google Scholar 

  5. Fragouli E, Wells D. Aneuploidy in the human blastocyst. Cytogenet Genome Res. 2011;133:149–59.

    CAS  PubMed  Google Scholar 

  6. Ruangvutilert P, Delhanty JD, Rodeck CH, Harper JC. Relative efficiency of FISH on metaphase and interphase nuclei from non-mosaic trisomic or triploid fibroblast cultures. Prenat Diagn. 2000;20:159–62.

    CAS  PubMed  Google Scholar 

  7. Coonen E, Derhaag JG, Dumoulin JC, van Wissen LC, Bras M, Janssen M, et al. Anaphase lagging mainly explains chromosomal mosaicism in human preimplantation embryos. Hum Reprod. 2004;19:316–24.

    PubMed  Google Scholar 

  8. Bielanska M, Jin S, Bernier M, Tan SL, Ao A. Diploid-aneuploid mosaicism in human embryos cultured to the blastocyst stage. Fertil Steril. 2005;84:336–42.

    PubMed  Google Scholar 

  9. Taylor TH, Gitlin SA, Patrick JL, Crain JL, Wilson JM, Griffin DK. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update. 2014;20:571–81.

    CAS  PubMed  Google Scholar 

  10. Viotti M. Preimplantation genetic testing for chromosomal abnormalities: aneuploidy, mosaicism, and structural rearrangements. Genes (Basel). 2020;11:602.

    CAS  Google Scholar 

  11. Munne S, Nakajima ST, Najmabadi S, Sauer MV, Angle MJ, Rivas JL, et al. First PGT-A using human in vivo blastocysts recovered by uterine lavage: comparison with matched IVF embryo controlsdagger. Hum Reprod. 2020;35:70–80.

    CAS  PubMed  Google Scholar 

  12. Tsuiko O, Jatsenko T, Parameswaran Grace LK, Kurg A, Vermeesch JR, Lanner F, et al. A speculative outlook on embryonic aneuploidy: Can molecular pathways be involved? Dev Biol. 2019;447:3–13.

    CAS  PubMed  Google Scholar 

  13. Pendina AA, Efimova OA, Fedorova ID, Leont’eva OA, Shilnikova EM, Lezhnina JG, et al. DNA methylation patterns of metaphase chromosomes in human preimplantation embryos. Cytogenet Genome Res. 2011;132:1–7.

    CAS  PubMed  Google Scholar 

  14. Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511:606–10.

    CAS  PubMed  Google Scholar 

  15. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    CAS  PubMed  Google Scholar 

  16. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet. 2011;7:e1002384.

    PubMed  PubMed Central  Google Scholar 

  17. Ostertag EM, Kazazian HH Jr. Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501–38.

    CAS  PubMed  Google Scholar 

  18. Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature. 2012;484:339–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Evsikov AV, de Vries WN, Peaston AE, Radford EE, Fancher KS, Chen FH, et al. Systems biology of the 2-cell mouse embryo. Cytogenet Genome Res. 2004;105:240–50.

    CAS  PubMed  Google Scholar 

  20. Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell. 2004;7:597–606.

    CAS  PubMed  Google Scholar 

  21. Peaston AE, Knowles BB, Hutchison KW. Genome plasticity in the mouse oocyte and early embryo. Biochem Soc Trans. 2007;35:618–22.

    CAS  PubMed  Google Scholar 

  22. Rosser JM, An W. L1 expression and regulation in humans and rodents. Front Biosci (Elite Ed). 2012;4:2203–25.

    PubMed Central  Google Scholar 

  23. Price EM, Cotton AM, Penaherrera MS, McFadden DE, Kobor MS, Robinson W. Different measures of "genome-wide" DNA methylation exhibit unique properties in placental and somatic tissues. Epigenetics. 2012;7:652–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li J, Kannan M, Trivett AL, Liao H, Wu X, Akagi K, et al. An antisense promoter in mouse L1 retrotransposon open reading frame-1 initiates expression of diverse fusion transcripts and limits retrotransposition. Nucleic Acids Res. 2014;42:4546–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Beraldi R, Pittoggi C, Sciamanna I, Mattei E, Spadafora C. Expression of LINE-1 retroposons is essential for murine preimplantation development. Mol Reprod Dev. 2006;73:279–87.

    CAS  PubMed  Google Scholar 

  26. Kigami D, Minami N, Takayama H, Imai H. MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol Reprod. 2003;68:651–4.

    CAS  PubMed  Google Scholar 

  27. Hall LL, Carone DM, Gomez AV, Kolpa HJ, Byron M, Mehta N, et al. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell. 2014;156:907–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tolmacheva EN, Vasilyev SA, Lebedev IN. Aneuploidy and DNA methylation as mirrored features of early human embryo development. Genes (Basel). 2020;11:E1084.

    Google Scholar 

  29. Malki S, van der Heijden GW, O’Donnell KA, Martin SL, Bortvin A. A role for retrotransposon LINE-1 in fetal oocyte attrition in mice. Dev Cell. 2014;29:521–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Luo YB, Zhang L, Lin ZL, Ma JY, Jia J, Namgoong S, et al. Distinct subcellular localization and potential role of LINE1-ORF1P in meiotic oocytes. Histochem Cell Biol. 2015;145:93–104.

    PubMed  Google Scholar 

  31. Lebedev IN, Ostroverkhova NV, Nikitina TV, Sukhanova NN, Nazarenko SA. Features of chromosomal abnormalities in spontaneous abortion cell culture failures detected by interphase FISH analysis. Eur J Hum Genet. 2004;12:513–20.

    CAS  PubMed  Google Scholar 

  32. Vasilyev SA, Timoshevsky VA, Lebedev IN. Cytogenetic mechanisms of aneuploidy in somatic cells of chemonuclear industry professionals with incorporated plutonium-239. Russ J Genet. 2010;46:1381–5.

    CAS  Google Scholar 

  33. Simoni G, Brambati B, Danesino C, Rossella F, Terzoli GL, Ferrari M, et al. Efficient direct chromosome analyses and enzyme determinations from chorionic villi samples in the first trimester of pregnancy. Hum Genet. 1983;63:349–57.

    CAS  PubMed  Google Scholar 

  34. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Crowther PJ, Doherty JP, Linsenmeyer ME, Williamson MR, Woodcock DM. Revised genomic consensus for the hypermethylated CpG island region of the human L1 transposon and integration sites of full length L1 elements from recombinant clones made using methylation-tolerant host strains. Nucleic Acids Res. 1991;19:2395–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jurka J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 2000;16:418–20.

    CAS  PubMed  Google Scholar 

  39. Tang Z, Steranka JP, Ma S, Grivainis M, Rodic N, Huang CR, et al. Human transposon insertion profiling: analysis, visualization and identification of somatic LINE-1 insertions in ovarian cancer. Proc Natl Acad Sci U S A. 2017;114:E733–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tolmacheva EN, Kashevarova AA, Skryabin NA, Lebedev IN. Epigenetic effects of trisomy 16 in human placenta. Mol Biol. 2013;47:373–81.

    CAS  Google Scholar 

  41. Jin S, Lee YK, Lim YC, Zheng Z, Lin XM, Ng DP, et al. Global DNA hypermethylation in down syndrome placenta. PLoS Genet. 2013;9:e1003515.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hatt L, Aagaard MM, Bach C, Graakjaer J, Sommer S, Agerholm IE, et al. Microarray-based analysis of methylation of 1st trimester trisomic placentas from Down syndrome, Edwards syndrome and Patau syndrome. PLoS One. 2016;11:e0160319.

    PubMed  PubMed Central  Google Scholar 

  43. Blair JD, Langlois S, McFadden DE, Robinson WP. Overlapping DNA methylation profile between placentas with trisomy 16 and early-onset preeclampsia. Placenta. 2014;35:216–22.

    CAS  PubMed  Google Scholar 

  44. Sharma A, Jamil MA, Nuesgen N, Schreiner F, Priebe L, Hoffmann P, et al. DNA methylation signature in peripheral blood reveals distinct characteristics of human X chromosome numerical aberrations. Clin Epigenetics. 2015;7:76.

    PubMed  PubMed Central  Google Scholar 

  45. Aravin AA, Sachidanandam R, Bourc'his D, Schaefer C, Pezic D, Toth KF, et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell. 2008;31:785–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 2008;22:908–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lim AK, Lorthongpanich C, Chew TG, Tan CW, Shue YT, Balu S, et al. The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Development. 2013;140:3819–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Marchetto MCN, Narvaiza I, Denli AM, Benner C, Lazzarini TA, Nathanson JL, et al. Differential L1 regulation in pluripotent stem cells of humans and apes. Nature. 2013;503:525–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008;453:539–43.

    CAS  PubMed  Google Scholar 

  50. Kim S, Gunesdogan U, Zylicz JJ, Hackett JA, Cougot D, Bao S, et al. PRMT5 protects genomic integrity during global DNA demethylation in primordial germ cells and preimplantation embryos. Mol Cell. 2014;56:564–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature. 2010;468:443–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu F, Zingler N, Schumann G, Stratling WH. Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription. Nucleic Acids Res. 2001;29:4493–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sheng W, Qian Y, Wang H, Ma X, Zhang P, Chen L, et al. Association between mRNA levels of DNMT1, DNMT3A, DNMT3B, MBD2 and LINE-1 methylation status in infants with tetralogy of Fallot. Int J Mol Med. 2013;32:694–702.

    CAS  PubMed  Google Scholar 

  54. He ZM, Li J, Hwa YL, Brost B, Fang Q, Jiang SW. Transition of LINE-1 DNA methylation status and altered expression in first and third trimester placentas. PLoS One. 2014;9:e96994.

    PubMed  PubMed Central  Google Scholar 

  55. Fuke C, Shimabukuro M, Petronis A, Sugimoto J, Oda T, Miura K, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. 2004;68:196–204.

    CAS  PubMed  Google Scholar 

  56. Novakovic B, Yuen RK, Gordon L, Penaherrera MS, Sharkey A, Moffett A, et al. Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics. 2011;12:529.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanchez-Delgado M, Court F, Vidal E, Medrano J, Monteagudo-Sanchez A, Martin-Trujillo A, et al. Human oocyte-derived methylation differences persist in the placenta revealing widespread transient imprinting. PLoS Genet. 2016;12:e1006427.

    PubMed  PubMed Central  Google Scholar 

  58. Adkins RM, Thomas F, Tylavsky FA, Krushkal J. Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med Genet. 2011;12:47.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Markunas CA, Wilcox AJ, Xu Z, Joubert BR, Harlid S, Panduri V, et al. Maternal age at delivery is associated with an epigenetic signature in Both Newborns and Adults. PLoS One. 2016;11:e0156361.

    PubMed  PubMed Central  Google Scholar 

  60. Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 2014;10:e1004458.

    PubMed  PubMed Central  Google Scholar 

  61. Smith RG, Reichenberg A, Kember RL, Buxbaum JD, Schalkwyk LC, Fernandes C, et al. Advanced paternal age is associated with altered DNA methylation at brain-expressed imprinted loci in inbred mice: implications for neuropsychiatric disease. Mol Psychiatry. 2013;18:635–6.

    CAS  PubMed  Google Scholar 

  62. Atsem S, Reichenbach J, Potabattula R, Dittrich M, Nava C, Depienne C, et al. Paternal age effects on sperm FOXK1 and KCNA7 methylation and transmission into the next generation. Hum Mol Genet. 2016;25:4996–5005.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A. 2003;100:2538–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Xie K, Ryan DP, Pearson BL, Henzel KS, Neff F, Vidal RO, et al. Epigenetic alterations in longevity regulators, reduced life span, and exacerbated aging-related pathology in old father offspring mice. Proc Natl Acad Sci U S A. 2018;115:E2348–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Denomme MM, Parks JC, McCallie BR, McCubbin NI, Schoolcraft WB, Katz-Jaffe MG. Advanced paternal age directly impacts mouse embryonic placental imprinting. PLoS One. 2020;15:e0229904.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Criscione SW, Theodosakis N, Micevic G, Cornish TC, Burns KH, Neretti N, et al. Genome-wide characterization of human L1 antisense promoter-driven transcripts. BMC Genomics. 2016;17:463.

    PubMed  PubMed Central  Google Scholar 

  67. Matlik K, Redik K, Speek M. L1 antisense promoter drives tissue-specific transcription of human genes. J Biomed Biotechnol. 2006;2006:71753.

    PubMed  PubMed Central  Google Scholar 

  68. Jonsson ME, Ludvik Brattas P, Gustafsson C, Petri R, Yudovich D, Pircs K, et al. Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nat Commun. 2019;10:3182.

    PubMed  PubMed Central  Google Scholar 

  69. Ueno M, Lee LK, Chhabra A, Kim YJ, Sasidharan R, Van Handel B, et al. c-Met-dependent multipotent labyrinth trophoblast progenitors establish placental exchange interface. Dev Cell. 2013;27:373–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Takahashi Y, Takahashi M, Carpino N, Jou ST, Chao JR, Tanaka S, et al. Leukemia inhibitory factor regulates trophoblast giant cell differentiation via Janus kinase 1-signal transducer and activator of transcription 3-suppressor of cytokine signaling 3 pathway. Mol Endocrinol. 2008;22:1673–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Du X, Dong Y, Shi H, Li J, Kong S, Shi D, et al. Mst1 and mst2 are essential regulators of trophoblast differentiation and placenta morphogenesis. PLoS One. 2014;9:e90701.

    PubMed  PubMed Central  Google Scholar 

  72. Lu JY, Shao W, Chang L, Yin Y, Li T, Zhang H, et al. Genomic repeats categorize genes with distinct functions for orchestrated regulation. Cell Rep. 2020;30:3296–311 e5.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The molecular cytogenetic and molecular genetic studies were performed in the “Medical Genomics” Core Facility of the Tomsk National Research Medical Center of the Russian Academy of Sciences using the resources of the biocollection “Biobank of the population of northern Eurasia” of the Research Institute of Medical Genetics, Tomsk NRMC. We would like to thank all the families of our patients for their assistance with the clinical evaluation. We are grateful to all the clinicians who were involved in sample collection.

Funding

This study was supported by the Russian Science Foundation (project 19-74-10026).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Vasilyev S.A., Tolmacheva E.N., and Lebedev I.N.; methodology: Vasilyev S.A. and Markov A.V.; formal analysis and investigation: Vasilyev S.A., Tolmacheva E.N., Vasilyeva O. Yu., Markov A.V., Zhigalina D.I., Zatula L.A., Lee V.A., Serdyukova E.S., Sazhenova E.A., Nikitina T.V., and Kashevarova A.A.; writing (original draft preparation): Vasilyev S.A.; writing (review and editing): Vasilyev S.A., Tolmacheva E.N., Lebedev I.N., and Nikitina T.V.; funding acquisition: Vasilyev S.A.; and supervision: Lebedev I.N.

Corresponding author

Correspondence to Stanislav A. Vasilyev.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the local Research Ethics Committee of the Research Institute of Medical Genetics, Tomsk NRMC.

Consent to participate

Written informed consent was obtained from the parents of the patients for their participation.

Consent for publication

Written informed consent was obtained from the parents of the patients for the publication of the clinical data.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilyev, S.A., Tolmacheva, E.N., Vasilyeva, O.Y. et al. LINE-1 retrotransposon methylation in chorionic villi of first trimester miscarriages with aneuploidy. J Assist Reprod Genet 38, 139–149 (2021). https://doi.org/10.1007/s10815-020-02003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-02003-1

Keywords

Navigation