Skip to main content
Log in

Quantitative and qualitative changes of mitochondria in human preimplantation embryos

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The oxygen consumption rates (OCRs) in mice and cattle have been reported to change during preimplantation embryogenesis. On the other hand, mitochondrial DNA (mtDNA) copy number has been shown to be unchanged in mice and changed in cattle and pigs. The interactions between mitochondrial functions and mtDNA copy numbers in human embryos during preimplantation development remain obscure.

Methods

Sixteen oocytes and 100 embryos were used to assess mtDNA copy numbers and OCR. Three oocytes and 12 embryos were used to determine cytochrome c oxidase activity. All specimens were obtained between July 2004 and November 2014, and donated from couples after they had given informed consent. Mature oocytes and embryos at 2–14-cell, morula, and blastocyst stages were used to assess their OCR in the presence or absence of mitotoxins. The mtDNA copy number was determined using the samples after analysis of OCR. The relationships between developmental stages and OCR, and developmental stages and mtDNA copy number were analyzed. Furthermore, cytochrome c oxidase activity was determined in oocytes and 4-cell to blastocyst stage embryos.

Results

The structure of inner mitochondrial membranes and their respiratory function developed with embryonic growth and the mtDNA copy numbers decreased transiently compared with those of oocytes. The undifferentiated state of inner cell mass cells appears to be associated with a low OCR. On the other hand, the mtDNA copy numbers increased and aerobic metabolism of mitochondria increased in trophectoderm cells.

Conclusions

The mitochondrial respiratory function of human embryos developed along with embryonic growth although the copy numbers of mtDNA decreased transiently before blastulation. OCRs increased toward the morula stage ahead of an increase of mtDNA at the time of blastulation. Data regarding changes in mitochondrial function and mtDNA copy number during preimplantation development of human embryos will be useful for the development of ideal culture media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Krisher RL, Bavister BD. Responses of oocytes and embryos to the culture environment. Theriogenology. 1998;59:103–14.

    Article  Google Scholar 

  2. Van Blerkom J, Davis P, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod. 1995;10:415–24.

    Article  CAS  PubMed  Google Scholar 

  3. Van Blerkom J. Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence. Reproduction. 2004;128:269–80.

    Article  PubMed  Google Scholar 

  4. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Goncalves PB, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod. 2001;64:904–9.

    Article  CAS  PubMed  Google Scholar 

  5. Van Blerkom J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion. 2011;11:797–813.

    Article  PubMed  Google Scholar 

  6. Dalton CM, Szabadkai G, Carroll J. Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J Cell Physiol. 2014;229:353–61.

    Article  CAS  PubMed  Google Scholar 

  7. Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83:52–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cree LM, Samuels DC, de Sousa Lopes SC, Rajasimha HK, Wonnapinij P, Mann JR, et al. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet. 2008;40:249–54.

    Article  CAS  PubMed  Google Scholar 

  9. May-Panloup P, Vignon X, Chrétien MF, Heyman Y, Tamassia M, Malthièry Y, et al. Increase of mitochondrial DNA content and transcripts in early bovine embryogenesis associated with upregulation of mtTFA and NRF1 transcription factors. Reprod Biol Endocrinol. 2005;3:65.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Spikings EC, Alderson J, St John JC. Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod. 2007;76:327–35.

    Article  CAS  PubMed  Google Scholar 

  11. Cagnone GL, Tsai TS, Makanji Y, Matthews P, Gould J, Bonkowski MS, et al. Restoration of normal embryogenesis by mitochondrial supplementation in pig oocytes exhibiting mitochondrial DNA deficiency. Sci Rep. 2016;6:23229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. May-Panloup P, Chretien MF, Malthiery Y, Reynier P. Mitochondrial DNA in the oocyte and the developing embryo. Curr Top Dev Biol. 2007;77:51–83.

    Article  CAS  PubMed  Google Scholar 

  13. Xu B, Guo N, Zhang XM, Shi W, Tong XH, Iqbal F, et al. Oocyte quality is decreased in women with minimal or mild endometriosis. Sci Rep. 2015;5:10779.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Monnot S, Samuels DC, Hesters L, Frydman N, Gigarel N, Burlet P, et al. Mutation dependance of the mitochondrial DNA copy number in the first stages of human embryogenesis. Hum Mol Genet. 2013;22:1867–72.

    Article  CAS  PubMed  Google Scholar 

  15. Fragouli E, Spath K, Alfarawati S, Kaper F, Craig A, Michel CE, et al. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet. 2015;11:e1005241.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Diez-Juan A, Rubio C, Marin C, Martinez S, Al-Asmar N, Riboldi M, et al. Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril. 2015;104:534–41.

    Article  CAS  PubMed  Google Scholar 

  17. Victor AR, Brake AJ, Tyndall JC, Griffin DK, Zouves CG, Barnes FL, et al. Accurate quantitation of mitochondrial DNA reveals uniform levels in human blastocysts irrespective of ploidy, age, or implantation potential. Fertil Steril. 2016. doi:10.1016/j.fertnstert.2016.09.028.

    PubMed  Google Scholar 

  18. Thompson JG, Partridge RJ, Houghton FD, Cox CI, Leese HJ. Oxygen uptake and carbohydrate metabolism by in vitro derived bovine embryos. J Reprod Fertil. 1996;106:299–306.

    Article  CAS  PubMed  Google Scholar 

  19. Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000;62:1866–74.

    Article  CAS  PubMed  Google Scholar 

  20. Ottosen LD, Hindkjaer J, Lindenberg S, Ingerslev HJ. Murine pre-embryo oxygen consumption and developmental competence. J Assist Reprod Genet. 2007;24:359–65.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Magnusson C, Hillensjo T, Hamberger L, Nilsson L. Oxygen consumption by human oocytes and blastocysts grown in vitro. Hum Reprod. 1986;1:183–4.

    Article  CAS  PubMed  Google Scholar 

  22. Yamanaka M, Hashimoto S, Amo A, Ito-Sasaki T, Abe H, Morimoto Y. Developmental assessment of human vitrified-warmed blastocysts based on oxygen consumption. Hum Reprod. 2011;26:3366–71.

    Article  CAS  PubMed  Google Scholar 

  23. Watson AJ. The cell biology of blastocyst development. Mol Reprod Dev. 1992;33:492–504.

    Article  CAS  PubMed  Google Scholar 

  24. Hashimoto S, Nakano T, Yamagata K, Inoue M, Morimoto Y, Nakaoka Y. Multinucleation per se is not always sufficient as a marker of abnormality to decide against transferring human embryos. Fertil Steril. 2016;106:133–9.

    Article  PubMed  Google Scholar 

  25. Kuwayama M, Vajta G, Leda S, Kato O. Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online. 2005;11:608–14.

    Article  PubMed  Google Scholar 

  26. Biggers JD, Racowsky C. The development of fertilized human ova to the blastocyst stage in KSOMAA medium: is a two-step protocol necessary? Reprod Biomed Online. 2002;5:133–40.

    Article  PubMed  Google Scholar 

  27. Maezawa T, Yamanaka M, Hashimoto S, Amo A, Ohgaki A, Nakaoka Y, et al. Possible selection of viable human blastocysts after vitrification by monitoring morphological changes. J Assist Reprod Genet. 2014;31:1099–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brenner CA, Wolny YM, Barritt JA, Matt DW, Munné S, Cohen J. Mitochondrial DNA deletion in human oocytes and embryos. Mol Hum Reprod. 1998;4:887–92.

    Article  CAS  PubMed  Google Scholar 

  29. Gibson TC, Kubisch HM, Brenner CA. Mitochondrial DNA deletions in rhesus macaque oocytes and embryos. Mol Hum Reprod. 2005;11:785–9.

    Article  CAS  PubMed  Google Scholar 

  30. Bavister BD, Squirrell JM. Mitochondrial distribution and function in oocytes and early embryos. Hum Reprod. 2000;15 Suppl 2:189–98.

    Article  PubMed  Google Scholar 

  31. Motta PM, Nottola SA, Makabe S, Heyn R. Mitochondrial morphology in human fetal and adult female germ cells. Hum Reprod. 2000;15((Supplt 2)):129–47.

    Article  PubMed  Google Scholar 

  32. Sathananthan AH, Selvaraj K, Girijashankar ML, Ganesh V, Selvaraj P, Trounson AO. From oogonia to mature oocytes: inactivation of the maternal centrosome in humans. Microsc Res Tech. 2006;69:396–407.

    Article  PubMed  Google Scholar 

  33. Bowles EJ, Lee JH, Alberio R, Lloyd RE, Stekel D, Campbell KH, et al. Contrasting effects of in vitro fertilization and nuclear transfer on the expression of mtDNA replication factors. Genetics. 2007;176:1511–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma J, Svoboda P, Schultz RM, Stein P. Regulation of zygotic gene activation in the preimplantation mouse embryo: global activation and repression of gene expression. Biol Reprod. 2001;64:1713–21.

    Article  CAS  PubMed  Google Scholar 

  35. Stigliani S, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum Reprod. 2013;28:2652–60.

    Article  CAS  PubMed  Google Scholar 

  36. Houghton FD, Thompson JG, Kennedy CJ, Leese HJ. Oxygen consumption and energy metabolism of the early mouse embryo. Mol Reprod Dev. 1996;44:476–85.

    Article  CAS  PubMed  Google Scholar 

  37. Guest DJ, Allen WR. Expression of cell-surface antigens and embryonic stem cell pluripotency genes in equine blastocysts. Stem Cells Dev. 2007;16:789–96.

    Article  CAS  PubMed  Google Scholar 

  38. Houghton FD. Energy metabolism of the inner cell mass and trophectoderm of the mouse blastocyst. Differentiation. 2006;74:11–8.

    Article  CAS  PubMed  Google Scholar 

  39. Scholtes MC, Zeilmaker GH. A prospective, randomized study of embryo transfer results after 3 or 5 days of embryo culture in in vitro fertilization. Fertil Steril. 1996;65:1245–8.

    Article  CAS  PubMed  Google Scholar 

  40. Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3:367–82.

    Article  CAS  PubMed  Google Scholar 

  41. Gardner DK, Schoolcraft WB, Wagley L, Schlenker T, Stevens J, Hesla J. A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum Reprod. 1998;13:3434–40.

    Article  CAS  PubMed  Google Scholar 

  42. Jones GM, Trounson AO, Gardner DK, Kausche A, Lolatgis N, Wood C. Evolution of a culture protocol for successful blastocyst development and pregnancy. Hum Reprod. 1998;13:169–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author’s contributions

S.H. was involved in the literature review, experimental design, data acquisition, interpretation and analysis, and manuscript preparation. N.M., T.Y., H.G., Y.M., and Y.N. prepared oocytes and embryos. M.Y. and H.M. performed TEM. M.Y. measured OCR. H.M., M.I., and H.S. wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Hashimoto.

Ethics declarations

Funding

Part of this work was supported by a grant (16gk0110014h0001) from the Japan Agency for Medical Research and Development to S.H. and Y.M.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashimoto, S., Morimoto, N., Yamanaka, M. et al. Quantitative and qualitative changes of mitochondria in human preimplantation embryos. J Assist Reprod Genet 34, 573–580 (2017). https://doi.org/10.1007/s10815-017-0886-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-0886-6

Keywords

Navigation