Skip to main content

Advertisement

Log in

Bovine in vitro embryo production: the effects of fibroblast growth factor 10 (FGF10)

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

In an attempt to improve in vitro embryo production, we investigated the effect of fibroblast growth factor 10 (FGF10) during in vitro maturation on the developmental capacity of bovine oocytes.

Material and methods

Cumulus–oocyte complexes (COCs) were aspirated from follicles of 3–8 mm diameter. After selection, the COCs were matured in medium with or without 0.5 ng/mL of FGF10. The effect of FGF10 during in vitro maturation (IVM) on nuclear maturation kinetics and expansion of the cumulus cells was investigated. Oocyte competence was assessed by the production and development speed of embryos and the relative expression of genes associated with embryo quality.

Results

FGF10 delayed the resumption of meiosis from 8 h onwards, but did not affect the percentage of oocytes reaching metaphase II, nor did it increase cumulus expansion at 22 h of maturation. We found no difference between treatments regarding embryo production, developmental speed, and gene expression.

Conclusion

In conclusion, the presence of FGF10 during IVM had no effect on embryo production, developmental speed, and gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Webb R et al. Intra-ovarian regulation of follicular development and oocyte competence in farm animals. Theriogenology. 2007;68 Suppl 1:S22–9.

    Article  CAS  PubMed  Google Scholar 

  2. Bottcher RT, Niehrs C. Fibroblast growth factor signaling during early vertebrate development. Endocr Rev. 2005;26(1):63–77.

    Article  PubMed  Google Scholar 

  3. Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gasperin BG et al. FGF10 inhibits dominant follicle growth and estradiol secretion in vivo in cattle. Reproduction. 2012;143(6):815–23.

    Article  CAS  PubMed  Google Scholar 

  5. Castilho AC et al. Expression of fibroblast growth factor 10 and cognate receptors in the developing bovine ovary. Theriogenology. 2014;81(9):1268–74.

    Article  CAS  PubMed  Google Scholar 

  6. Portela VM et al. The role of fibroblast growth factor-18 in follicular atresia in cattle. Biol Reprod. 2015;92(1):14.

    Article  PubMed  Google Scholar 

  7. Cho JH et al. Fibroblast growth factor 7 stimulates in vitro growth of oocytes originating from bovine early antral follicles. Mol Reprod Dev. 2008;75(12):1736–43.

    Article  CAS  PubMed  Google Scholar 

  8. Price CA. Mechanisms of fibroblast growth factor signaling in the ovarian follicle. J Endocrinol. 2016;228(2):R31–43.

    Article  CAS  PubMed  Google Scholar 

  9. Taniguchi F et al. Aberrant expression of keratinocyte growth factor receptor in ovarian surface epithelial cells of endometrioma. Fertil Steril. 2008;89(2):478–80.

    Article  CAS  PubMed  Google Scholar 

  10. Oron G et al. Fibroblast growth factor 10 in human ovaries. Reprod Biomed Online. 2012;25(4):396–401.

    Article  CAS  PubMed  Google Scholar 

  11. Buratini Jr J et al. Expression and function of fibroblast growth factor 10 and its receptor, fibroblast growth factor receptor 2B, in bovine follicles. Biol Reprod. 2007;77(4):743–50.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang K, Hansen PJ, Ealy AD. Fibroblast growth factor 10 enhances bovine oocyte maturation and developmental competence in vitro. Reproduction. 2010;140(6):815–26.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang K, Ealy AD. Disruption of fibroblast growth factor receptor signaling in bovine cumulus-oocyte complexes during in vitro maturation reduces subsequent embryonic development. Domest Anim Endocrinol. 2012;42(4):230–8.

    Article  PubMed  Google Scholar 

  14. Caixeta ES et al. Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes. Reproduction. 2013;146(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  15. Pomini Pinto RF et al. Effects of FGF10 on bovine oocyte meiosis progression, apoptosis, embryo development and relative abundance of developmentally important genes in vitro. Reprod Domest Anim. 2015;50(1):84–90.

    Article  CAS  PubMed  Google Scholar 

  16. Parrish JJ, Krogenaes A, Susko-Parrish JL. Effect of bovine sperm separation by either swim-up or Percoll method on success of in vitro fertilization and early embryonic development. Theriogenology. 1995;44(6):859–69.

    Article  CAS  PubMed  Google Scholar 

  17. Machado GM et al. Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos. Theriogenology. 2009;71(8):1289–97.

    Article  CAS  PubMed  Google Scholar 

  18. Holm P et al. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology. 1998;50(8):1285–99.

    Article  CAS  PubMed  Google Scholar 

  19. Vandesompele J et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  22. Buchtova M et al. Instability restricts signaling of multiple fibroblast growth factors. Cell Mol Life Sci. 2015;72(12):2445–59.

    Article  CAS  PubMed  Google Scholar 

  23. Liang CG et al. Mechanisms regulating oocyte meiotic resumption: roles of mitogen-activated protein kinase. Mol Endocrinol. 2007;21(9):2037–55.

    Article  CAS  PubMed  Google Scholar 

  24. Salhab M et al. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol Reprod Dev. 2013;80(2):166–82.

    Article  CAS  PubMed  Google Scholar 

  25. Tomek W, Smiljakovic T. Activation of Akt (protein kinase B) stimulates metaphase I to metaphase II transition in bovine oocytes. Reproduction. 2005;130(4):423–30.

    Article  CAS  PubMed  Google Scholar 

  26. Ali A, Sirard MA. Effect of the absence or presence of various protein supplements on further development of bovine oocytes during in vitro maturation. Biol Reprod. 2002;66(4):901–5.

    Article  CAS  PubMed  Google Scholar 

  27. Ali A, Sirard MA. The effects of 17beta-estradiol and protein supplement on the response to purified and recombinant follicle stimulating hormone in bovine oocytes. Zygote. 2002;10(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  28. Ghanem N et al. Bovine blastocysts with developmental competence to term share similar expression of developmentally important genes although derived from different culture environments. Reproduction. 2011;142(4):551–64.

    Article  CAS  PubMed  Google Scholar 

  29. Machado GM et al. Post-hatching development of in vitro bovine embryos from day 7 to 14 in vivo versus in vitro. Mol Reprod Dev. 2013;80(11):936–47.

    Article  CAS  PubMed  Google Scholar 

  30. El-Halawany N et al. Quantitative expression analysis of blastocyst-derived gene transcripts in preimplantation developmental stages of in vitro-produced bovine embryos using real-time polymerase chain reaction technology. Reprod Fertil Dev. 2005;16(8):753–62.

    Article  Google Scholar 

  31. El-Sayed A et al. Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol Genomics. 2006;28(1):84–96.

    Article  CAS  PubMed  Google Scholar 

  32. Wrenzycki C, Herrmann D, Niemann H. Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology. 2007;68:S77–83.

    Article  CAS  PubMed  Google Scholar 

  33. Hoelker M et al. Molecular signatures of bovine embryo developmental competence. Reprod Fertil Dev. 2013;26(1):22–36.

    Article  CAS  PubMed  Google Scholar 

  34. Loren, P., et al. Effect of short-term exposure of cumulus–oocyte complex to 3-morpholinosydnonimine on in vitro embryo development and gene expression in cattle. Reproduction in Domestic Animals. 2016; 51(6):1010–19.

  35. Jackson BW et al. Formation of cytoskeletal elements during mouse embryogenesis. Intermediate filaments of the cytokeratin type and desmosomes in preimplantation embryos. Differentiation. 1980;17(3):161–79.

    Article  CAS  PubMed  Google Scholar 

  36. Machado GM et al. Post-hatching development of bovine embryos in vitro: the effects of tunnel preparation and gender. Zygote. 2012;20(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  37. Skouri-Panet F et al. Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: role of the in vitro hetero-complex formation in chaperone activity. Biochimie. 2012;94(4):975–84.

    Article  CAS  PubMed  Google Scholar 

  38. Habraken Y et al. Binding of insertion/deletion DNA mismatches by the heterodimer of yeast mismatch repair proteins MSH2 and MSH3. Curr Biol. 1996;6(9):1185–7.

    Article  CAS  PubMed  Google Scholar 

  39. Galaviz-Hernandez C et al. Plac8 and Plac9, novel placental-enriched genes identified through microarray analysis. Gene. 2003;309(2):81–9.

    Article  CAS  PubMed  Google Scholar 

  40. Touzard E et al. Specific expression patterns and cell distribution of ancient and modern PAG in bovine placenta during pregnancy. Reproduction. 2013;146(4):347–62.

    Article  CAS  PubMed  Google Scholar 

  41. Green JA et al. The establishment of an ELISA for the detection of pregnancy-associated glycoproteins (PAGs) in the serum of pregnant cows and heifers. Theriogenology. 2005;63(5):1481–503.

    Article  CAS  PubMed  Google Scholar 

  42. Xiang W, MacLaren LA. Expression of fertilin and CD9 in bovine trophoblast and endometrium during implantation. Biol Reprod. 2002;66(6):1790–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian Agricultural Research Corporation (EMBRAPA, 01.13.06.001.04.00) and Coordination for Improvement of Higher Education Personnel (CAPES, 564376/2010-8) for their financial support and the Qualimax (Luziânia-GO) slaughterhouse for providing the necessary biological materials for this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot Alves Nunes Dode.

Additional information

Capsule Use of FGF 10 during IVM of bovine oocytes does not affect embryonic development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diógenes, M.N., Guimarães, A.L.S., Leme, L.O. et al. Bovine in vitro embryo production: the effects of fibroblast growth factor 10 (FGF10). J Assist Reprod Genet 34, 383–390 (2017). https://doi.org/10.1007/s10815-016-0852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0852-8

Keywords

Navigation