Skip to main content
Log in

Increasing of blastocyst rate and gene expression in co-culture of bovine embryos with adult adipose tissue-derived mesenchymal stem cells

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Despite advances in the composition of defined embryo culture media, co-culture with somatic cells is still used for bovine in vitro embryo production (IVEP) in many laboratories worldwide. Granulosa cells are most often used for this purpose, although recent work suggests that co-culture with stem cells of adult or embryonic origin or their derived biomaterials may improve mouse, cattle, and pig embryo development.

Materials and methods

In experiment 1, in vitro produced bovine embryos were co-cultured in the presence of two concentrations of bovine adipose tissue-derived mesenchymal cells (b-ATMSCs; 103 and 104 cells/mL), in b-ATMSC preconditioned medium (SOF-Cond), or SOF alone (control). In experiment 2, co-culture with 104 b-ATMSCs/mL was compared to the traditional granulosa cell co-culture system (Gran).

Results

In experiment 1, co-culture with 104 b-ATMSCs/mL improved blastocyst rates in comparison to conditioned and control media (p < 0.05). Despite that it did not show difference with 103 b-ATMSCs/mL (p = 0.051), group 104 b-ATMSCs/mL yielded higher results of blastocyst production. In experiment 2, when compared to group Gran, co-culture with 104 b-ATMSCs/mL improved not only blastocyst rates but also quality as assessed by increased total cell numbers and mRNA expression levels for POU5F1 and G6PDH (p < 0.05).

Conclusions

Co-culture of bovine embryos with b-ATMSCs was more beneficial than the traditional co-culture system with granulosa cells. We speculate that the microenvironmental modulatory potential of MSCs, by means of soluble substances and exosome secretions, could be responsible for the positive effects observed. Further experiments must be done to evaluate if this beneficial effect in vitro also translates to an increase in offspring following embryo transfer. Moreover, this study provides an interesting platform to study the basic requirements during preimplantation embryo development, which, in turn, may aid the improvement of embryo culture protocols in bovine and other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tan X-W, Tan J-H. Co-culture of embryos: influencing factors and mechanisms of action. Sheng Wu Gong Cheng Xue Bao. 2003;19:502–5.

    PubMed  Google Scholar 

  2. Benkhalifa M, Demirol A, Sari T, Balashova E, Tsouroupaki M, Giakoumakis Y, et al. Autologous embryo-cumulus cells co-culture and blastocyst transfer in repeated implantation failures: a collaborative prospective randomized study. Zygote. 2012;20:173–80.

    Article  CAS  PubMed  Google Scholar 

  3. Pinyopummintr T, Bavister BD. In vitro-matured/in vitro-fertilized bovine oocytes can develop into morulae/blastocysts in chemically defined, protein-free culture media. Biol Reprod. 1991;45:736–42.

    Article  CAS  PubMed  Google Scholar 

  4. Sakagami N, Nishino O, Adachi S, Umeki H, Uchiyama H, Ichikawa K, et al. Improvement of preimplantation development of in vitro-fertilized bovine zygotes by glucose supplementation to a chemically defined medium. J Vet Med Sci. 2014;76:1403–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang L-J, Xiong X-R, Zhang H, Li Y-Y, Li Q, Wang Y-S, et al. Defined media optimization for in vitro culture of bovine somatic cell nuclear transfer (SCNT) embryos. Theriogenology. 2012;78:2110–9.

    Article  CAS  PubMed  Google Scholar 

  6. Lim KT, Jang G, Ko KH, Lee WW, Park HJ, Kim JJ, et al. Improved in vitro bovine embryo development and increased efficiency in producing viable calves using defined media. Theriogenology. 2007;67:293–302.

    Article  PubMed  Google Scholar 

  7. Salzano A, Albero G, Zullo G, Neglia G, Abdel-Wahab A, Bifulco G, et al. Effect of resveratrol supplementation during culture on the quality and cryotolerance of bovine in vitro produced embryos. Anim Reprod Sci. 2014;151:91–6.

    Article  CAS  PubMed  Google Scholar 

  8. Campelo IS, Pereira AF, Alcântara-Neto AS, Canel NG, Souza-Fabjan JMG, Teixeira DIA, et al. Effect of crotamine, a cell-penetrating peptide, on blastocyst production and gene expression of in vitro fertilized bovine embryos. Zygote. 2014;24:1–10.

    Google Scholar 

  9. Baldoceda-Baldeon LM, Gagné D, Vigneault C, Blondin P, Robert C. Improvement of bovine in vitro embryo production by vitamin K2 supplementation. Reproduction. 2014;148:489–97.

    Article  PubMed  Google Scholar 

  10. Santana PDPB, Silva TVG, da Costa NN, da Silva BB, Carter TF, Cordeiro MDS, et al. Supplementation of bovine embryo culture medium with L-arginine improves embryo quality via nitric oxide production. Mol Reprod Dev. 2014;81:918–27.

    Article  CAS  PubMed  Google Scholar 

  11. Moshkdanian G, Nematollahi-Mahani SN, Pouya F, Nematollahi-Mahani A. Antioxidants rescue stressed embryos at a rate comparable with co-culturing of embryos with human umbilical cord mesenchymal cells. J Assist Reprod Genet. 2011;28:343–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kim EY, Lee JB, Park HY, Jeong CJ, Riu KZ, Park SP. The use of embryonic stem cell derived bioactive material as a new protein supplement for the in vitro culture of bovine embryos. J Reprod Dev. 2011;57:346–54.

    Article  CAS  PubMed  Google Scholar 

  13. Park HY, Kim EY, Lee S-E, Choi H-Y, Moon JJ, Park M-J, et al. Effect of human adipose tissue-derived mesenchymal-stem-cell bioactive materials on porcine embryo development. Mol Reprod Dev. 2013;80:1035–47.

    Article  CAS  PubMed  Google Scholar 

  14. Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol. 2012;3:359.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Katsuda T, Kosaka N, Takeshita F, Ochiya T. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Proteomics. 2013;13:1637–53.

    Article  CAS  PubMed  Google Scholar 

  16. Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5:103–10.

    Article  CAS  PubMed  Google Scholar 

  17. Kapur SK, Katz AJ. Review of the adipose derived stem cell secretome. Biochimie. 2013;95:2222–8.

    Article  CAS  PubMed  Google Scholar 

  18. Hocking AM, Gibran NS. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res. 2010;316:2213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ling B, Feng DQ, Zhou Y, Gao T, Wei HM, Tian ZG. Effect of conditioned medium of mesenchymal stem cells on the in vitro maturation and subsequent development of mouse oocyte. Braz J Med Biol Res. 2008;41:978–85.

    Article  CAS  PubMed  Google Scholar 

  20. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

  21. Sampaio RV, Chiaratti MR, Santos DCN, Bressan FF, Sangalli JR, Sá ALA, et al. Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality. Genet Mol Res. 2015;14:53–62.

    Article  CAS  PubMed  Google Scholar 

  22. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  24. Goossens K, Van Poucke M, Van Soom A, Vandesompele J, Van Zeveren A, Peelman LJ. Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev Biol. 2005;5:27.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Linher K, Dyce P, Li J. Primordial germ cell-like cells differentiated in vitro from skin-derived stem cells. PLoS One. 2009;4:e8263.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Song S-H, Kumar BM, Kang E-J, Lee Y-M, Kim T-H, Ock S-A, et al. Characterization of porcine multipotent stem/stromal cells derived from skin, adipose, and ovarian tissues and their differentiation in vitro into putative oocyte-like cells. Stem Cells Dev. 2011;20:1359–70.

    Article  CAS  PubMed  Google Scholar 

  27. Théry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9:581–93.

    Article  PubMed  Google Scholar 

  28. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285:17442–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM. Exosomes. Communicative & Integrative Biology. 2010;3:447–50.

    Article  Google Scholar 

  31. Kropp J, Salih SM, Khatib H. Expression of microRNAs in bovine and human pre-implantation embryo culture media. Front Genet. 2014;5:91.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rosenbluth EM, Shelton DN, Wells LM, Sparks AET, Van Voorhis BJ. Human embryos secrete microRNAs into culture media—a potential biomarker for implantation. Fertil Steril. 2014;101:1493–500.

    Article  CAS  PubMed  Google Scholar 

  33. Macario AJL, de Macario EC. Sick chaperones, cellular stress, and disease. N Engl J Med. 2005;353:1489–501.

    Article  CAS  PubMed  Google Scholar 

  34. Sha K, Boyer LA. The chromatin signature of pluripotent cells. In: Stem Book. Cambridge: Harvard Stem Cell Institute; 2009.

  35. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  36. Lequarre AS, Grisart B, Moreau B, Schuurbiers N, Massip A, Dessy F. Glucose metabolism during bovine preimplantation development: analysis of gene expression in single oocytes and embryos. Mol Reprod Dev. 1997;48:216–26.

    Article  CAS  PubMed  Google Scholar 

  37. Iwata H, Kimura K, Hashimoto S, Ohta M, Tominaga K, Minami N. Role of G6PD activity on sex ratio and developmental competence of bovine embryos under oxidative stress. J Reprod Dev. 2002;48:447–53.

    Article  CAS  Google Scholar 

  38. Gutiérrez-adan A, Rizos D, Fair T, Moreira PN, Pintado B, de la Fuente J, et al. Effect of speed of development on mRNA expression pattern in early bovine embryos cultured in vivo or in vitro. Mol Reprod Dev. 2004;68:441–8.

    Article  PubMed  Google Scholar 

  39. Rodríguez-Alvarez L, Manriquez J, Velasquez A, Castro FO. Constitutive expression of the embryonic stem cell marker OCT4 in bovine somatic donor cells influences blastocysts rate and quality after nucleus transfer. In Vitro Cell Dev Biol. 2013;49:657–67.

    Article  Google Scholar 

  40. Oh HJ, Lee TH, Lee JH, Lee BC. Trichostatin a improves preimplantation development of bovine cloned embryos and alters expression of epigenetic and pluripotency genes in cloned blastocysts. J Vet Med Sci. 2012;74:1409–15.

    Article  CAS  PubMed  Google Scholar 

  41. Oliveira CS, de Souza MM, Saraiva NZ, Tetzner TAD, Lima MR, Lopes FL, et al. In vitro culture of bovine embryos in murine ES cell conditioned media negatively affects expression of pluripotency-related markers OCT4, SOX2 and SSEA1. Reprod Domest Anim. 2012;47:428–35.

    Article  CAS  PubMed  Google Scholar 

  42. Khan DR, Dubé D, Gall L, Peynot N, Ruffini S, Laffont L, et al. Expression of pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo. PLoS One. 2012;7:e34110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lopes AS, Wrenzycki C, Ramsing NB, Herrmann D, Niemann H, Løvendahl P, et al. Respiration rates correlate with mRNA expression of G6PD and GLUT1 genes in individual bovine in vitro-produced blastocysts. Theriogenology. 2007;68:223–36.

    Article  CAS  PubMed  Google Scholar 

  44. Sturmey RG, Bermejo-Alvarez P, Gutierrez-Adan A, Rizos D, Leese HJ, Lonergan P. Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability. Mol Reprod Dev. 2010;77:285–96.

    Article  CAS  PubMed  Google Scholar 

  45. Rodbell M, Jones AB. Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem. 1966;241:140–2.

    CAS  PubMed  Google Scholar 

  46. Aust L, Devlin B, Foster SJ, Halvorsen YDC, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6:7–14.

    Article  CAS  PubMed  Google Scholar 

  47. Pascucci L, Curina G, Mercati F, Marini C, Dall’Aglio C, Paternesi B, et al. Flow cytometric characterization of culture expanded multipotent mesenchymal stromal cells (MSCs) from horse adipose tissue: towards the definition of minimal stemness criteria. Vet Immunol Immunopathol. 2011;144:499–506.

    Article  CAS  PubMed  Google Scholar 

  48. Webb TL, Quimby JM, Dow SW. In vitro comparison of feline bone marrow-derived and adipose tissue-derived mesenchymal stem cells. J Feline Med Surg. 2012;14:165–8.

    Article  PubMed  Google Scholar 

  49. Neupane M, Chang C-C, Kiupel M, Yuzbasiyan-Gurkan V. Isolation and characterization of canine adipose-derived mesenchymal stem cells. Tissue Eng Part A. 2008;14:1007–15.

    Article  CAS  PubMed  Google Scholar 

  50. Zullo G, Albero G, Neglia G, De Canditiis C, Bifulco G, Campanile G, et al. L-ergothioneine supplementation during culture improves quality of bovine in vitro-produced embryos. Theriogenology. 2016;85:688–97.

    Article  CAS  PubMed  Google Scholar 

  51. Remião MH, Lucas CG, Domingues WB, Silveira T, Barther NN, Komninou ER, et al. Melatonin delivery by nanocapsules during in vitro bovine oocyte maturation decreased the reactive oxygen species of oocytes and embryos. Reprod Toxicol. 2016;63:70–81.

    Article  PubMed  Google Scholar 

  52. Lucas CG, Remião MH, Komninou ER, Domingues WB, Haas C, de Leon PMM, et al. Tretinoin-loaded lipid-core nanocapsules decrease reactive oxygen species levels and improve bovine embryonic development during in vitro oocyte maturation. Reprod Toxicol. 2015;58:131–9.

    Article  CAS  PubMed  Google Scholar 

  53. Oseikria M, Elis S, Maillard V, Corbin E, Uzbekova S. N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle. Theriogenology. 2016;85:1625–1634.e2.

    Article  CAS  PubMed  Google Scholar 

  54. Ortiz-Escribano N, Smits K, Piepers S, Van den Abbeel E, Woelders H, Van Soom A. Role of cumulus cells during vitrification and fertilization of mature bovine oocytes: effects on survival, fertilization, and blastocyst development. Theriogenology. 2016;86:635–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the North Paraná State University (UNOPAR—Brazil) for the financial partnership with the authors’ laboratory and the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) for the student scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moysés S. Miranda.

Additional information

Capsule

Co-culture of in vitro produced bovine embryos with adult adipose tissue-derived bovine stem cells improved blastocyst development and quality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, M.S., Nascimento, H.S., Costa, M.P.R. et al. Increasing of blastocyst rate and gene expression in co-culture of bovine embryos with adult adipose tissue-derived mesenchymal stem cells. J Assist Reprod Genet 33, 1395–1403 (2016). https://doi.org/10.1007/s10815-016-0779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0779-0

Keywords

Navigation