Skip to main content

Advertisement

Log in

Exosome-mediated communication in the ovarian follicle

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Cells are able to produce and release different types of vesicles, such as microvesicles and exosomes, in the extracellular microenvironment. According to the scientific community, both microvesicles and exosomes are able to take on and transfer different macromolecules from and to other cells, and in this way, they can influence the recipient cell function. Among the different macromolecule cargos, the most studied are microRNAs. MicroRNAs are a large family of non-coding RNAs involved in the regulation of gene expression. They control every cellular process and their altered regulation is involved in human diseases. Their presence in mammalian follicular fluid has been recently demonstrated, and here, they are enclosed within microvesicles and exosomes or they can also be associated to protein complexes. The presence of microvesicles and exosomes carrying microRNAs in follicular fluid could represent an alternative mechanism of autocrine and paracrine communication inside the ovarian follicle. The outcomes from these studies could be important in basic reproductive research but could also be useful for clinical application. In fact, the characterization of extracellular vesicles in follicular fluid could improve reproductive disease diagnosis and provide biomarkers of oocyte quality in ART (Assisted Reproductive Treatment).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015. doi:10.3402/jev.v4.27066.

    PubMed  PubMed Central  Google Scholar 

  2. Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21(R1):R125–34.

    Article  CAS  PubMed  Google Scholar 

  3. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  4. Lo Cicero A, Stahl PD, Raposo G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol. 2015. doi:10.1016/j.ceb.2015.04.013.

    PubMed  Google Scholar 

  5. Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R. Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sc. 2013. doi:10.3390/ijms14035338.

    Google Scholar 

  6. Ragusa M, Barbagallo D, Purrello M. Exosomes: nanoshuttles to the future of BioMedicine. Cell Cycle. 2015. doi:10.1080/15384101.2015.1006535.

    PubMed  PubMed Central  Google Scholar 

  7. Antonyak MA, Cerione RA. Emerging picture of the distinct traits and functions of microvesicles and exosomes. Proc Natl Acad Sci U S A. 2015;112(12):3589–90. doi:10.1073/pnas.1502590112. Epub 2015 Mar 11.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanada M, Bachmann MH, Hardy JW, Frimannson DO, Bronsart L, Wang A, et al. Contag CH Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl AcadSci U S A. 2015;112(12):E1433–42. doi:10.1073/pnas.1418401112. Epub 2015 Feb 23.

    CAS  Google Scholar 

  9. Fu XD. Non-coding RNA: a new frontier in regulatory biology. Natl Sci Rev. 2014;1:190–204.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  11. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14. doi:10.1038/nrg2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41. doi:10.1373/clinchem.2010.147405.

    Article  CAS  PubMed  Google Scholar 

  13. Cortez MA, Bueso-Ramos C, Ferdin J. Lopez-Berestein G. CalinGA. MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev ClinOncol: Sood AK; 2011. doi:10.1038/nrclinonc.2011.76.

    Google Scholar 

  14. Kosaka N, Yoshioka Y, Hagiwara K, Tominaga N, Katsuda T, Ochiya T. Trash or treasure: extracellular microRNAs and cell-to-cell communication. Front Genet. 2013. doi:10.3389/fgene.2013.00173.

    PubMed  PubMed Central  Google Scholar 

  15. McGinnis LK, Luense LJ, Christenson LK. MicroRNA in ovarian biology and disease. Cold Spring HarbPerspect Med. 2015. doi:10.1101/cshperspect.a022962.

    Google Scholar 

  16. Li Y, Fang Y, Liu Y, Yang X. MicroRNAs in ovarian function and disorders. J Ovarian Res. 2015;8:51. doi:10.1186/s13048-015-0162-2.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hutt KJ, Albertini DF. An oocentric view of folliculogenesis and embryogenesis. Reprod Biomed Online. 2007;14:758–64.

    Article  CAS  PubMed  Google Scholar 

  18. Zuccotti M, Merico V, Cecconi S, Redi CA, Garagna S. What does it take to make a developmentally competent mammalian egg? Hum Reprod Update. 2011. doi:10.1093/humupd/dmr009.

    PubMed  Google Scholar 

  19. Sun QY, Miao YL, Schatten H. Towards a new understanding on the regulation of mammalian oocyte meiosis resumption. Cell Cycle. 2009;8:2741–7.

    Article  CAS  PubMed  Google Scholar 

  20. Reddy P, Zheng W, Liu K. Mechanisms maintaining the dormancy and survival of mammalian primordial follicles. Trends Endocrinol Metab. 2010. doi:10.1016/j.tem.2009.10.001.

    PubMed  Google Scholar 

  21. Fragouli E, Lalioti MD, Wells D. The transcriptome of follicular cells: biological insights and clinical implications for the treatment of infertility. Hum Reprod Update. 2014. doi:10.1093/humupd/dmt044.

    PubMed  PubMed Central  Google Scholar 

  22. Zamah AM, Hsieh M, Chen J, Vigne JL, Rosen MP, Cedars MI, et al. Human oocyte maturation is dependent on LH-stimulated accumulation of the epidermal growth factor-like growth factor, amphiregulin. Hum Reprod. 2010. doi:10.1093/humrep/deq212.

    PubMed  PubMed Central  Google Scholar 

  23. Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13:289–312.

    Article  CAS  PubMed  Google Scholar 

  24. Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009. doi:10.1186/1477-7827-7-40.

    Google Scholar 

  25. Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82:1021–9.

    Article  CAS  PubMed  Google Scholar 

  26. da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod. 2012. doi:10.1095/biolreprod.111.093252.

    PubMed  Google Scholar 

  27. Sohel MM, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, et al. Exosomal and non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One. 2013. doi:10.1371/journal.pone.0078505.

    Google Scholar 

  28. da Silveira JC, Carnevale EM, Winger QA, Bouma GJ. Regulation of ACVR1 and ID2 by cell-secreted exosomes during follicle maturation in the mare. Reprod Biol Endocrinol. 2014. doi:10.1186/1477-7827-12-44.

    PubMed  PubMed Central  Google Scholar 

  29. Diez-Fraile A, Lammens T, Tilleman K, Witkowski W, Verhasselt B, De Sutter P, et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertil (Camb). 2014. doi:10.3109/14647273.2014.897006.

    Google Scholar 

  30. Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014. doi:10.1016/j.fertnstert.2014.08.005.

    PubMed  Google Scholar 

  31. da Silveira JC, de Andrade GM, Nogueira MF, Meirelles FV, Perecin F. Involvement of miRNAs and cell-secreted vesicles in mammalian ovarian antral follicle development. Reprod Sci. 2015. doi:10.1177/1933719115574344.

    PubMed  Google Scholar 

  32. da Silveira JC, Winger QA, Bouma GJ, Carnevale EM. Effects of age on follicular fluid exosomal microRNAs and granulosa cell transforming growth factor-? signalling during follicle development in the mare. Reprod Fertil Dev. 2015. doi:10.1071/RD14452.

    Google Scholar 

  33. Hung WT, Hong X, Christenson LK, McGinnis LK. Extracellular vesicles from bovine follicular fluid support cumulus expansion. Biol Reprod. 2015 . pii: biolreprod.115.132977.

  34. Urbanelli L, Magini A, Buratta S, Brozzi A, Sagini K, Polchi A, et al. Signaling pathways in exosomes biogenesis. Secretion and Fate Genes. 2013. doi:10.3390/genes4020152.

    PubMed  Google Scholar 

  35. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262:9412–20.

    CAS  PubMed  Google Scholar 

  36. Raposo G. NijmanHW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, GeuzeHJ.B lymphocytes secrete antigen-presenting vesicles. J Exp Med. 1996;183:1161–72.

    Article  CAS  PubMed  Google Scholar 

  37. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2088;319:1244–7.

    Article  Google Scholar 

  38. Van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, et al. The tetraspaninCD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev Cell. 2011;21:708–21.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinforma. 2015;13(1):17–24. doi:10.1016/j.gpb.2015.02.001. Epub 2015 Feb 24. Review.

    Article  Google Scholar 

  40. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, et al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosc. 2010. doi:10.1523/JNEUROSCI.5699-09.2010.

    Google Scholar 

  41. Yu X, Harris SL, Levine AJ. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 2006;66(9):4795–801.

    Article  CAS  PubMed  Google Scholar 

  42. Sang Q, Yao Z, Wang H, Feng R, Wang H, Zhao X, et al. Identification of microRNAs in human follicular fluid: characterization of microRNAs that govern steroidogenesis in vitro and are associated with polycystic ovary syndrome in vivo. J Clin Endocrinol Metab. 2013. doi:10.1210/jc.2013-1715.

    Google Scholar 

  43. Schauer SN, Sontakke SD, Watson ED, Esteves CL, Donadeu FX. Involvement of miRNAs in equine follicle development. Reproduction. 2013. doi:10.1530/REP-13-0107.

    PubMed  Google Scholar 

  44. Donadeu FX. SchauerSN. Domest Anim Endocrinol: Differential miRNA expression between equine ovulatory and anovulatory follicles; 2013. doi:10.1016/j.domaniend.2013.06.006.

    Google Scholar 

  45. Roth LW, Mc Callie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet. 2014. doi:10.1007/s10815-013-0161-4.

    PubMed  PubMed Central  Google Scholar 

  46. Yin M, Wang X, Yao G, Lü M, Liang M, Sun Y, et al. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem. 2014. doi:10.1074/jbc.M113.546044.

    Google Scholar 

  47. Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, et al. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep. 2015. doi:10.1038/srep08689.

    Google Scholar 

  48. Moreno JM, Núñez MJ, Quiñonero A, Martínez S, de la Orden M, Simón C, et al. Follicular fluid and mural granulosa cells microRNA profiles vary in in vitro fertilization patients depending on their age and oocyte maturation stage. Fertil Steril. 2015. doi:10.1016/j.fertnstert.2015.07.001.

    PubMed  Google Scholar 

  49. Sørensen AE, Wissing ML, Salö S, Englund AL, Dalgaard LT. MicroRNAs related to polycystic ovary syndrome (PCOS). Genes (Basel). 2014. doi:10.3390/genes5030684.

    PubMed Central  Google Scholar 

  50. Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L, et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol. 2015. doi:10.1007/s13277-014-2807-y.

    Google Scholar 

  51. Falcieri E, Battistin L, Agnati LF, Stocchi V. C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res. 2010;316:1977–84.

    Article  PubMed  Google Scholar 

  52. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008. doi:10.1038/nature06908.

    Google Scholar 

  53. Kandere-Grzybowska K, Letourneau R, Kempuraj D, Donelan J, Poplawski S, Boucher W, et al. IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J Immunol. 2003;171:4830–6.

    Article  CAS  PubMed  Google Scholar 

  54. Zolti M, Ben-Rafael Z, Meirom R, Shemesh M, Bider D, Mashiach S, et al. Cytokine involvement in oocytes and early embryos. Fertil Steril. 1991;56:265–72.

    CAS  PubMed  Google Scholar 

  55. Field SL, Dasgupta T, Cummings M, Orsi NM. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev. 2014.

  56. Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14:1036–45.

    Article  CAS  PubMed  Google Scholar 

  57. Richards JS, Russell DL, Ochsner S, Hsieh M, Doyle KH, Falender AE, et al. Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. Recent Prog Horm Res. 2002;57:195–220.

    Article  CAS  PubMed  Google Scholar 

  58. Lichner Z, Páll E, Kerekes A, Pállinger E, Maraghechi P, Bosze Z, et al. The miR-290-295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells. Differentiation. 2011. doi:10.1016/j.diff.2010.08.002.

    PubMed  Google Scholar 

  59. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J. Cell Biol. 2010;190:1079–91.

    Article  CAS  Google Scholar 

  60. Zheng W, Nagaraju G, Liu Z, Liu K. Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol Cell Endocrinol. 2012. doi:10.1016/j.mce.2011.05.027.

    Google Scholar 

  61. Barkalina N, Jones C, Wood MJ, Coward K. Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature. Hum Reprod Update. 2015. doi:10.1093/humupd/dmv027.

    PubMed  Google Scholar 

Download references

Acknowledgments

The author wishes to thank M Vento and M Purrello with whom she shares her research work. She wishes to thank R Battaglia and the lab staff for their contribution and the Scientific Bureau of the University of Catania for language support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Di Pietro.

Ethics declarations

Conflict of interest

The author declares that she has no competing interests.

Additional information

Capsule This review summarizes the current state of knowledge about extracellular vesicles in follicular fluid and elaborates on their their potential roles in follicular differentiation and oocyte maturation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Pietro, C. Exosome-mediated communication in the ovarian follicle. J Assist Reprod Genet 33, 303–311 (2016). https://doi.org/10.1007/s10815-016-0657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-016-0657-9

Keywords

Navigation