Skip to main content

Advertisement

Log in

Unaltered timing of embryo development in women with polycystic ovarian syndrome (PCOS): a time-lapse study

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Polycystic ovarian syndrome (PCOS) is a common cause of female infertility. Factors other than anovulation, such as low embryo quality have been suggested to contribute to the infertility in these women. This 2-year retrospective study used timelapse technology to investigate the PCOS-influence on timing of development in the pre-implantation embryo (primary endpoint). The secondary outcome measure was live birth rates after elective single-embryo transfer.

Methods

In total, 313 embryos from 43 PCOS women, and 1075 embryos from 174 non-PCOS women undergoing assisted reproduction were included. All embryos were monitored until day 6. Differences in embryo kinetics were tested in a covariance regression model to account for potential confounding variables: female age, BMI, fertilization method and male infertility.

Results

Time to initiate compaction and reach the morula stage as well as the duration of the 4th cleavage division was significantly shorter in PCOS embryos compared with non-PCOS embryos. No other kinetic differences were found at any time-points annotated. The proportion of multi-nucleated cells at the 2-cell stage was significantly higher in PCOS embryos compared with non-PCOS embryos. The live birth rates were comparable between the two groups.

Conclusion

The findings suggest that the causative factor for subfertility in PCOS is not related to timing of development in the pre-implantation embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: a prospective study. J Clin Endocrinol Metab. 1998;83:3078–82.

    CAS  PubMed  Google Scholar 

  2. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.

    Google Scholar 

  3. Dor J, Shulman A, Levran D, Ben-Rafael Z, Rudak E, Mashiach S. The treatment of patients with polycystic ovarian syndrome by in-vitro fertilization and embryo transfer: a comparison of results with those of patients with tubal infertility. Hum Reprod. 1990;5:816–8.

    CAS  PubMed  Google Scholar 

  4. Sengoku K, Tamate K, Takuma N, Yoshida T, Goishi K, Ishikawa M. The chromosomal normality of unfertilized oocytes from patients with polycystic ovarian syndrome. Hum Reprod. 1997;12:474–7.

    Article  CAS  PubMed  Google Scholar 

  5. Urman B, Fluker MR, Yuen BH, Fleige-Zahradka BG, Zouves CG, Moon YS. The outcome of in vitro fertilization and embryo transfer in women with polycystic ovary syndrome failing to conceive after ovulation induction with exogenous gonadotropins. Fertil Steril. 1992;57:1269–73.

    CAS  PubMed  Google Scholar 

  6. Sahu B, Ozturk O, Ranierri M, Serhal P. Comparison of oocyte quality and intracytoplasmic sperm injection outcome in women with isolated polycystic ovaries or polycystic ovarian syndrome. Arch Gynecol Obstet. 2008;277:239–44.

    Article  PubMed  Google Scholar 

  7. Weghofer A, Munne S, Chen S, Barad D, Gleicher N. Lack of association between polycystic ovary syndrome and embryonic aneuploidy. Fertil Steril. 2007;88:900–5.

    Article  PubMed  Google Scholar 

  8. Roos N, Kieler H, Sahlin L, Ekman-Ordeberg G, Falconer H, Stephansson O. Risk of adverse pregnancy outcomes in women with polycystic ovary syndrome: population based cohort study. BMJ. 2011;343:d6309.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet. 2007;370:685–97.

    Article  CAS  PubMed  Google Scholar 

  10. Heijnen EM, Eijkemans MJ, Hughes EG, Laven JS, Macklon NS, Fauser BC. A meta-analysis of outcomes of conventional IVF in women with polycystic ovary syndrome. Hum Reprod Update. 2006;12:13–21.

    Article  CAS  PubMed  Google Scholar 

  11. Kim YJ, Ku SY, Jee BC, Suh CS, Kim SH, Choi YM, et al. A comparative study on the outcomes of in vitro fertilization between women with polycystic ovary syndrome and those with sonographic polycystic ovary-only in GnRH antagonist cycles. Arch Gynecol Obstet. 2010;282:199–205.

    Article  PubMed  Google Scholar 

  12. Vause TD, Cheung AP, Sierra S, Claman P, Graham J, Guillemin JA, et al. Ovulation induction in polycystic ovary syndrome: No. 242, May 2010. Int J Gynaecol Obstet. 2010;111:95–100.

    Article  PubMed  Google Scholar 

  13. Wood JR, Dumesic DA, Abbott DH, Strauss 3rd JF. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab. 2007;92:705–13.

    Article  CAS  PubMed  Google Scholar 

  14. Haouzi D, Assou S, Monzo C, Vincens C, Dechaud H, Hamamah S. Altered gene expression profile in cumulus cells of mature MII oocytes from patients with polycystic ovary syndrome. Hum Reprod. 2012;27:3523–30.

    Article  CAS  PubMed  Google Scholar 

  15. Qiao J, Feng HL. Extra- and intra-ovarian factors in polycystic ovary syndrome: impact on oocyte maturation and embryo developmental competence. Hum Reprod Update. 2011;17:17–33.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dumesic DA, Padmanabhan V, Abbott DH. Polycystic ovary syndrome and oocyte developmental competence. Obstet Gynecol Surv. 2008;63:39–48.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Zhao SY, Qiao J, Chen YJ, Liu P, Li J, Yan J. Expression of growth differentiation factor-9 and bone morphogenetic protein-15 in oocytes and cumulus granulosa cells of patients with polycystic ovary syndrome. Fertil Steril. 2010;94:261–7.

    Article  CAS  PubMed  Google Scholar 

  18. Lane M, Gardner DK. Selection of viable mouse blastocysts prior to transfer using a metabolic criterion. Hum Reprod. 1996;11:1975–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil. 1997;109:153–64.

    Article  CAS  PubMed  Google Scholar 

  20. Wolff HS, Fredrickson JR, Walker DL, Morbeck DE. Advances in quality control: mouse embryo morphokinetics are sensitive markers of in vitro stress. Hum Reprod. 2013;28:1776–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Meseguer M, Rubio I, Cruz M, Basile N, Marcos J, Requena A. Embryo incubation and selection in a time-lapse monitoring system improves pregnancy outcome compared with a standard incubator: a retrospective cohort study. Fertil Steril. 2012;98:1481–9.e10.

    Article  PubMed  Google Scholar 

  22. Rubio I, Galan A, Larreategui Z, Ayerdi F, Bellver J, Herrero J, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102:1287–1294.e5.

    Article  PubMed  Google Scholar 

  23. VerMilyea MD, Tan L, Anthony JT, Conaghan J, Ivani K, Gvakharia M, et al. Computer-automated time-lapse analysis results correlate with embryo implantation and clinical pregnancy: a blinded, multi-centre study. Reprod Biomed Online. 2014;29:729–36.

    Article  PubMed  Google Scholar 

  24. Kirkegaard K, Ahlstrom A, Ingerslev HJ, Hardarson T. Choosing the best embryo by time lapse versus standard morphology. Fertil Steril. 2015;103:323–32.

    Article  PubMed  Google Scholar 

  25. Wissing ML, Bjerge MR, Olesen AIG, Hoest T, Mikkelsen AL (2013) Impact of PCOS on early embryo cleavage kinetics. Reprod Biomed Online.

  26. Munoz M, Cruz M, Humaidan P, Garrido N, Perez-Cano I, Meseguer M. The type of GnRH analogue used during controlled ovarian stimulation influences early embryo developmental kinetics: a time-lapse study. Eur J Obstet Gynecol Reprod Biol. 2013;168:167–72.

    Article  CAS  PubMed  Google Scholar 

  27. Kirkegaard K, Kesmodel US, Hindkjaer JJ, Ingerslev HJ (2013) Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum Reprod

  28. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Human embryonic development after blastomere removal: a time-lapse analysis. Hum Reprod. 2012;27:97–105.

    Article  PubMed  Google Scholar 

  29. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ (2012) Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil Steril.

  30. Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004;81:551–5.

    Article  CAS  PubMed  Google Scholar 

  31. Kirkegaard K, Agerholm IE, Ingerslev HJ. Time-lapse monitoring as a tool for clinical embryo assessment. Hum Reprod. 2012;27:1277–85.

    Article  PubMed  Google Scholar 

  32. Sundvall L, Ingerslev HJ, Breth Knudsen U, Kirkegaard K (2013) Inter- and intra-observer variability of time-lapse annotations. Hum Reprod.

  33. Artini PG, Ruggiero M, Parisen Toldin MR, Monteleone P, Monti M, Cela V, et al. Vascular endothelial growth factor and its soluble receptor in patients with polycystic ovary syndrome undergoing IVF. Hum Fertil (Camb). 2009;12:40–4.

    Article  CAS  Google Scholar 

  34. Staessen C, Van Steirteghem A. The genetic constitution of multinuclear blastomeres and their derivative daughter blastomeres. Hum Reprod. 1998;13:1625–31.

    Article  CAS  PubMed  Google Scholar 

  35. Saldeen P, Sundstrom P. Nuclear status of four-cell preembryos predicts implantation potential in in vitro fertilization treatment cycles. Fertil Steril. 2005;84:584–9.

    Article  PubMed  Google Scholar 

  36. De Vincentiis S, De Martino E, Buffone MG, Brugo-Olmedo S. Use of metaphase I oocytes matured in vitro is associated with embryo multinucleation. Fertil Steril. 2013;99:414–21.

    Article  PubMed  Google Scholar 

  37. Cruz M, Garrido N, Herrero J, Perez-Cano I, Munoz M, Meseguer M. Timing of cell division in human cleavage-stage embryos is linked with blastocyst formation and quality. Reprod Biomed Online. 2012;25:371–81.

    Article  PubMed  Google Scholar 

  38. Dal Canto M, Coticchio G, Mignini Renzini M, De Ponti E, Novara PV, Brambillasca F, et al. Cleavage kinetics analysis of human embryos predicts development to blastocyst and implantation. Reprod Biomed Online. 2012;25:474–80.

    Article  PubMed  Google Scholar 

  39. Azzarello A, Hoest T, Mikkelsen AL. The impact of pronuclei morphology and dynamicity on live birth outcome after time-lapse culture. Hum Reprod. 2012;27:2649–57.

    Article  CAS  PubMed  Google Scholar 

  40. Hashimoto S, Kato N, Saeki K, Morimoto Y. Selection of high-potential embryos by culture in poly(dimethylsiloxane) microwells and time-lapse imaging. Fertil Steril. 2012;97:332–7.

    Article  PubMed  Google Scholar 

  41. Hlinka D, Kalatova B, Uhrinova I, Dolinska S, Rutarova J, Rezacova J, et al. Time-lapse cleavage rating predicts human embryo viability. Physiol Res. 2012;61:513–25.

    CAS  PubMed  Google Scholar 

  42. Wong C, Chen AA, Behr B, Shen S. Time-lapse microscopy and image analysis in basic and clinical embryo development research. Reprod Biomed Online. 2013;26:120–9.

    Article  CAS  PubMed  Google Scholar 

  43. Conaghan J, Chen AA, Willman SP, Ivani K, Chenette PE, Boostanfar R, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100:412–9.e5.

    Article  PubMed  Google Scholar 

  44. Lemmen JG, Agerholm I, Ziebe S. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod Biomed Online. 2008;17:385–91.

    Article  CAS  PubMed  Google Scholar 

  45. Gluszak O, Stopinska-Gluszak U, Glinicki P, Kapuscinska R, Snochowska H, Zgliczynski W, et al. Phenotype and metabolic disorders in polycystic ovary syndrome. ISRN Endocrinol. 2012;2012:569862.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Han AR, Kim HO, Cha SW, Park CW, Kim JY, Yang KM, et al. Adverse pregnancy outcomes with assisted reproductive technology in non-obese women with polycystic ovary syndrome: a case-control study. Clin Exp Reprod Med. 2011;38:103–8.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Tian L, Shen H, Lu Q, Norman RJ, Wang J. Insulin resistance increases the risk of spontaneous abortion after assisted reproduction technology treatment. J Clin Endocrinol Metab. 2007;92:1430–3.

    Article  CAS  PubMed  Google Scholar 

  48. Wittemer C, Ohl J, Bailly M, Bettahar-Lebugle K, Nisand I. Does body mass index of infertile women have an impact on IVF procedure and outcome? J Assist Reprod Genet. 2000;17:547–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14:367–78.

    Article  CAS  PubMed  Google Scholar 

  50. Norman RJ. Obesity, polycystic ovary syndrome and anovulation–how are they interrelated? Curr Opin Obstet Gynecol. 2001;13:323–7.

    Article  CAS  PubMed  Google Scholar 

  51. Cano F, Garcia-Velasco JA, Millet A, Remohi J, Simon C, Pellicer A. Oocyte quality in polycystic ovaries revisited: identification of a particular subgroup of women. J Assist Reprod Genet. 1997;14:254–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Marquard KL, Stephens SM, Jungheim ES, Ratts VS, Odem RR, Lanzendorf S, et al. Polycystic ovary syndrome and maternal obesity affect oocyte size in in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2011;95:2146-9–2149.e1.

    Article  Google Scholar 

  53. Ludwig M, Finas DF, al-Hasani S, Diedrich K, Ortmann O. Oocyte quality and treatment outcome in intracytoplasmic sperm injection cycles of polycystic ovarian syndrome patients. Hum Reprod. 1999;14:354–8.

    Article  CAS  PubMed  Google Scholar 

  54. Hardy K, Robinson FM, Paraschos T, Wicks R, Franks S, Winston RM. Normal development and metabolic activity of preimplantation embryos in vitro from patients with polycystic ovaries. Hum Reprod. 1995;10:2125–35.

    CAS  PubMed  Google Scholar 

  55. Child TJ, Abdul-Jalil AK, Gulekli B, Tan SL. In vitro maturation and fertilization of oocytes from unstimulated normal ovaries, polycystic ovaries, and women with polycystic ovary syndrome. Fertil Steril. 2001;76:936–42.

    Article  CAS  PubMed  Google Scholar 

  56. Munoz M, Cruz M, Humaidan P, Garrido N, Perez-Cano I, Meseguer M. Dose of recombinant FSH and oestradiol concentration on day of HCG affect embryo development kinetics. Reprod Biomed Online. 2012;25:382–9.

    Article  CAS  PubMed  Google Scholar 

  57. Shang K, Jia X, Qiao J, Kang J, Guan Y. Endometrial abnormality in women with polycystic ovary syndrome. Reprod Sci. 2012;19:674–83.

    Article  PubMed  Google Scholar 

  58. Cermik D, Selam B, Taylor HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:238–43.

    Article  CAS  PubMed  Google Scholar 

  59. Duijkers IJ, Klipping C. Polycystic ovaries, as defined by the 2003 Rotterdam consensus criteria, are found to be very common in young healthy women. Gynecol Endocrinol. 2010;26:152–60.

    Article  PubMed  Google Scholar 

  60. Johnstone EB, Rosen MP, Neril R, Trevithick D, Sternfeld B, Murphy R, et al. The polycystic ovary post-rotterdam: a common, age-dependent finding in ovulatory women without metabolic significance. J Clin Endocrinol Metab. 2010;95:4965–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A, et al. A very large proportion of young Danish women have polycystic ovaries: is a revision of the Rotterdam criteria needed? Hum Reprod. 2010;25:3117–22.

    Article  CAS  PubMed  Google Scholar 

  62. Lauritsen MP, Bentzen JG, Pinborg A, Loft A, Forman JL, Thuesen LL, et al. The prevalence of polycystic ovary syndrome in a normal population according to the Rotterdam criteria versus revised criteria including anti-Mullerian hormone. Hum Reprod. 2014;29:791–801.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the patients and staff at the Fertility Clinic, Aarhus University Hospital. The authors are grateful for statistical support provided by Morten Frydenberg, University of Aarhus.

Authors’ roles

J.I and U.B.K conceived the study and designed the project. L.S. drafted the manuscript. L.S. and K.K. did the acquisition and interpretation of data.

K.K., J.I and U.B.K performed critical revision of the manuscript. All authors have given their final approval of present version to be published.

Funding

Funding for the present study was provided by Aarhus University. Research at the Fertility Clinic, Aarhus University Hospital is supported by an unrestricted grant from MSD and Ferring.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Sundvall.

Additional information

Capsule By the use of time-lapse analysis, we demonstrate that the timing of development in the pre-implantation embryo from women with PCOS is comparable to that of non-PCOS embryos. The findings suggest that the causative factor for subfertility in PCOS is not related to timing of development in the pre-implantation embryo.

Trial registration number: NCT01953146

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundvall, L., Kirkegaard, K., Ingerslev, H.J. et al. Unaltered timing of embryo development in women with polycystic ovarian syndrome (PCOS): a time-lapse study. J Assist Reprod Genet 32, 1031–1042 (2015). https://doi.org/10.1007/s10815-015-0488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0488-0

Keywords

Navigation