Skip to main content
Log in

Neonatal outcomes after the implantation of human embryos vitrified using a closed-system device

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Closed vitrification poses a risk of adversely affecting embryo development, while it may minimize the risk of contamination. We assessed the effects of closed-system human embryo vitrification on fetal development after implantation, neonatal outcome, and clinical safety.

Methods

This was a retrospective cohort study conducted at a private fertility clinic. A total of 875 vitrified-warmed blastocysts that were single-transferred under hormone-replacement cycles between November 2011 and December 2013 were randomly divided into two groups (closed vitrification, n 313; open vitrification, n 562) after receiving the patients’ consent forms. Developmental competence after implantation, including gestational age, birth weight, sex, Apgar score, and anomalies of newborns, after the transfer of blastocysts vitrified by closing vitrification was compared with that obtained in the case of open vitrification.

Results

There were no significant differences between the use of closed and open vitrification systems in embryo development after implantation, gestational age, birth weight, sex ratio, Apgar score, and congenital anomalies of newborns.

Conclusion

Human embryos can be vitrified using a closed vitrification system without impairment of neonatal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983;305:707–9.

    Article  CAS  PubMed  Google Scholar 

  2. Rall W, Fahy G. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature. 1985;313:573–5.

    Article  CAS  PubMed  Google Scholar 

  3. Liebermann J, Tucker MJ. Effect of carrier system on the yield of human oocytes and embryos as assessed by survival and developmental potential after vitrification. Reproduction. 2002;124:483–9.

    Article  CAS  PubMed  Google Scholar 

  4. Mazur P, Seki S, Pinn IL, Kleinhans FW, Edashige K. Extra- and intracellular ice formation in mouse oocytes. Cryobiology. 2005;51:29–53.

    Article  CAS  PubMed  Google Scholar 

  5. Vajta G, Nagy ZP. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online. 2006;12:779–96.

    Article  PubMed  Google Scholar 

  6. Mazur P, Cole KW, Hall WH, Schreuders PD, Mahowald AP. Cryobiological preservation of Drosophila embryos. Science. 1992;258:1932–5.

    Article  CAS  PubMed  Google Scholar 

  7. Huang JY, Chen HY, Tan SL, Chian RC. Effect of choline-supplemented sodium-depleted slow freezing versus vitrification on mouse oocyte meiotic spindles and chromosome abnormalities. Fertil Steril. 2007;88:1093–100.

    Article  PubMed  Google Scholar 

  8. Lane M, Gardner DK. Vitrification of mouse oocytes using a nylon loop. Mol Reprod Dev. 2001;58:342–7.

    Article  CAS  PubMed  Google Scholar 

  9. Nedambale TL, Dinnyes A, Groen W, Dobrinsky JR, Tian XC, Yang X. Comparison on in vitro fertilized bovine embryos cultured in KSOM or SOF and cryopreserved by slow freezing or vitrification. Theriogenology. 2004;62:437–49.

    Article  CAS  PubMed  Google Scholar 

  10. Valojerdi MR, Salehnia M. Developmental potential and ultrastructural injuries of metaphase II (MII) mouse oocytes after slow freezing or vitrification. J Assist Reprod Genet. 2005;22:119–27.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Loutradi KE, Kolibianakis EM, Venetis CA, Papanikolaou EG, Pados G, Bontis I, et al. Cryopreservation of human embryos by vitrification or slow freezing: a systematic review and meta-analysis. Fertil Steril. 2008;90:186–93.

    Article  PubMed  Google Scholar 

  12. Martinez-Burgos M, Herrero L, Megias D, Salvanes R, Montoya MC, Cobo AC, et al. Vitrification versus slow freezing of oocytes: effects on morphologic appearance, meiotic spindle configuration, and DNA damage. Fertil Steril. 2011;95:374–7.

    Article  PubMed  Google Scholar 

  13. Bielanski A. The potential for animal and human germplasm contamination through assisted reproductive technologies. Trends Reprod Biol. 2006;2:13–36.

    Google Scholar 

  14. Bielanski A, Vajta G. Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. Hum Reprod. 2009;24:2457–67.

    Article  CAS  PubMed  Google Scholar 

  15. Kuwayama M, Vajta G, Leda S, Kato O. Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reprod Biomed Online. 2005;11:608–14.

    Article  PubMed  Google Scholar 

  16. Isachenko V, Montag M, Isachenko E, Zaeva V, Krivokharchenko I, Shafei R, et al. Aseptic technology of vitrification of human pronuclear oocytes using open-pulled straws. Hum Reprod. 2005;20:492–6.

    Article  CAS  PubMed  Google Scholar 

  17. Isachenko V, Katkov II, Yakovenko S, Lulat AG, Ulug M, Arvas A, et al. Vitrification of human laser treated blastocysts within cut standard straws (CSS): novel aseptic packaging and reduced concentrations of cryoprotectants. Cryobiology. 2007;54:305–9.

    Article  CAS  PubMed  Google Scholar 

  18. Vanderzwalmen P, Ectors F, Grobet L, Prapas Y, Panagiotidis Y, Vanderzwalmen S, et al. Aseptic vitrification of blastocysts from infertile patients, egg donors and after IVM. Reprod Biomed Online. 2009;19:700–7.

    Article  CAS  PubMed  Google Scholar 

  19. Larman MG, Gardner DK. Vitrification of mouse embryos with super-cooled air. Fertil Steril. 2011;95:1462–6.

    Article  PubMed  Google Scholar 

  20. AbdelHafez F, Xu J, Goldberg J, Desai N. Vitrification in open and closed carriers at different cell stages: assessment of embryo survival, development. DNA integrity and stability during vapor phase storage for transport. BMC Biotechnol. 2011;11:29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Panagiotidis Y, Kasapi E, Goudakou M, Papatheodorou A, Pasadaki T, Petousis S, et al. Open vs. closed vitrification system for the cryopreservation of human blastocysts: a prospective randomized study. Hum Reprod. 2012;27:i59–60.

    Article  Google Scholar 

  22. Papatheodourou A, Vanderzwalmen P, Panagiotidis Y, Kasapi L, Goudakou M, Pasadaki T, et al. Open versus closed oocyte vitrification system: a prospective randomized sibling-oocyte study. Hum Reprod. 2012;27:i72.

    Article  Google Scholar 

  23. De Munck N, Verheyen G, Stoop D, Van Landuyt L, Van de Velde H. Survival and post-warming in vitro competence of human oocytes after high-security closed system vitrification. Hum Reprod. 2012;27:i72–3.

    Article  Google Scholar 

  24. Hashimoto S, Amo A, Hama S, Ohsumi K, Nakaoka Y, Morimoto Y. A closed system supports the developmental competence of human embryos after vitrification. J Assist Reprod Genet. 2013;30:371–6.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Desai NN, Goldberg JM, Austin C, Falcone T. The new Rapid-i carrier is an effective system for human embryo vitrification at both the blastocyst and cleavage stage. Reprod Biol Endocrinol. 2013;11:41.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chen Y, Zheng X, Yan J, Qiao J, Liu P. Neonatal outcomes after the transfer of vitrified blastocysts: closed versus open vitrification system. Reprod Biol Endocrinol. 2013;11:107.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kupka MS, Ferraretti AP, de Mouzon J, Erb K, D’Hooghe T, Castilla JA, et al. The European IVF-monitoring (EIM) and consortium, for the European society of human reproduction and embryology (ESHRE). Assisted reproductive technology in Europe, 2010: results generated from European registers by ESHRE. Hum Reprod. 2014;29:2099–113.

    Article  CAS  PubMed  Google Scholar 

  28. Gardner DK, Lane M. Culture and selection of viable human blastocysts: a feasible proposition for human IVF. Hum Reprod Update. 1997;3:367–82.

    Article  CAS  PubMed  Google Scholar 

  29. Rehman KS, Bukulmez O, Langley M, Carr BR, Nackley AC, Doody KM, et al. Late stages of embryo progression are a much better predictor of clinical pregnancy than early cleavage in intracytoplasmic sperm injection and in vitro fertilization cycles with blastocyst-stage transfer. Fertil Steril. 2007;87:1041–52.

    Article  PubMed  Google Scholar 

  30. Hashimoto S, Amo A, Hama S, Ito K, Nakaoka Y, Morimoto Y. Growth retardation in human blastocysts increases the incidence of abnormal spindles and decreases implantation potential after vitrification. Hum Reprod. 2013;28:1528–35.

    Article  PubMed  Google Scholar 

  31. Hashimoto S, Nishihara T, Murata Y, Oku H, Nakaoka Y, Fukuda A, et al. Medium without ammonium accumulation supports the developmental competence of human embryos. J Reprod Dev. 2008;54:370–4.

    Article  PubMed  Google Scholar 

  32. Rooney DE, Czepulkowski BH. Human cytogenetics. A practical approach. New York: Oxford University Press; 1992.

    Google Scholar 

  33. Edgar DH, Gook DA. A critical appraisal of cryopreservation (slow cooling versus vitrification) of human oocytes and embryos. Hum Reprod Update. 2012;18:536–54.

    Article  PubMed  Google Scholar 

  34. Yokota Y, Sato S, Yokota M, Ishikawa Y, Makita M, Asada T, et al. Successful pregnancy following blastocyst vitrification: case report. Hum Reprod. 2000;15:1802–3.

    Article  CAS  PubMed  Google Scholar 

  35. CryoBio: pre-market notification K092398 HSV straw. 2010.

  36. Seki S, Mazur P. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology. 2009;59:75–82.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bonduelle M, Liebaers I, Deketelaere V, Derde MP, Camus M, Devroey P, et al. Neonatal data on a cohort of 2889 infants born after ICSI (1991–1999) and of 2995 infants born after IVF (1983–1999). Hum Reprod. 2002;19:671–94.

    Article  Google Scholar 

  38. Budinetz TH, Mann JS, Griffin DW, Benadiva CA, Nulsen JC, Engmann LC. Maternal and neonatal outcomes after gonadotropin-releasing hormone agonist trigger for final oocyte maturation in patients undergoing in vitro fertilization. Fertil Steril. 2014;102:753–8.

    Article  CAS  PubMed  Google Scholar 

  39. Koike A, Nakaoka Y, Tarui S, Ohgaki A, Sugihara K, Nagata F, et al. Analysis of clinical outcomes from pregnancies achieved by frozen-thawed embryo transfer. J Fertil Implant. 2008;25:219–22.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the Japan Society for the Promotion of Science (JPS-RFTF 23580397 to S.H.).

Conflicts of interest

None of the authors has a conflict of interest to disclose. Some of these data were presented at the 69th Annual Meeting of the American Society for Reproductive Medicine, October 12–17, 2013 in Boston, and a part of the data of viability after vitrification was reported in J Assist Reprod Genet 2013; 30:371–376.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Hashimoto.

Additional information

Capsule Closed vitrification, which eliminates the risk of cross-contamination during cooling and storage in liquid nitrogen, does not cause a debilitating effect on human embryo growth and development.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwahata, H., Hashimoto, S., Inoue, M. et al. Neonatal outcomes after the implantation of human embryos vitrified using a closed-system device. J Assist Reprod Genet 32, 521–526 (2015). https://doi.org/10.1007/s10815-015-0431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0431-4

Keywords

Navigation