Skip to main content
Log in

Effect of L-carnitine supplementation on maturation and early embryo development of immature mouse oocytes selected by brilliant cresyle blue staining

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The present study was designed to investigate the effect of L-carnitine treatment during IVM on nuclear and cytoplasmic maturation of immature oocytes selected by Brilliant Cresyle Blue (BCB) staining, and their subsequent developmental competence.

Materials & methods

Compact cumulus-oocyte complexes (COCs) were collected from NMRI mice ovaries and stained with BCB staining. BCB+ (colored cytoplasm) oocytes were then cultured in tissue culture medium (TCM) 199 with 0.0, 0.3 and 0.6 mg/ml L-carnitine.

Results

The both L-carnitine concentrations significantly increased the intracellular glutathione (P < 0.001), nuclear maturation (P < 0.01) and expression levels of cyclin-dependent kinase1 (CDK1) (P < 0.05). Moreover, treated oocytes with 0.6 mg/ml L-carnitine showed increased (P < 0.05) expression of mitogen-activated protein kinase1 (MAPK1) mRNA. Also, adding L-carnitine (0.6 mg/ml) to IVM medium significantly increased the cleavage rate (P < 0.05). The blastocyst development rate (BDR) in the both L-carnitine treated groups was significantly higher (P < 0.001) than the control group. L-carnitine had no significant effect on total blastocyst cell numbers.

Conclusions

These data indicated that L-carnitine supplementation during IVM of immature BCB+ oocytes improved preimplantation developmental competence of oocytes after IVF, probably by accelerating cytoplasmic and nuclear maturation of oocytes. It may provide a novel approach to improving ART outcomes in infertile couples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albuz FK, Sasseville M, Lane M, Armstrong DT, Thompson JG, Gilchrist RB. Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum Reprod. 2010;25:2999–3011.

    Article  CAS  PubMed  Google Scholar 

  2. Whelan 3rd JG, Vlahos NF. The ovarian hyperstimulation syndrome. Fertil Steril. 2000;73:883–96.

    Article  PubMed  Google Scholar 

  3. Wang N, Le F, Zhan QT, Li L, Dong MY, Ding GL, et al. Effects of in vitro maturation on histone acetylation in metaphase II oocytes and early cleavage embryos. Obstet Gynecol Int. 2010;2010:989278.

    PubMed Central  PubMed  Google Scholar 

  4. Baart EB, Martini E, Eijkemans MJ, Van Opstal D, Beckers NG, Verhoeff A, et al. Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod. 2007;22:980–8.

    Article  PubMed  Google Scholar 

  5. Buckett WM, Chian RC, Holzer H, Dean N, Usher R, Tan SL. Obstetric outcomes and congenital abnormalities after in vitro maturation, in vitro fertilization, and intracytoplasmic sperm injection. Obstet Gynecol. 2007;110:885–91.

    Article  PubMed  Google Scholar 

  6. Nagai T. The improvement of in vitro maturation systems for bovine and porcine oocytes. Theriogenology. 2001;55:1291–301.

    Article  CAS  PubMed  Google Scholar 

  7. Su J, Wang Y, Li R, Peng H, Hua S, Li Q, et al. Oocytes selected using BCB staining enhance nuclear reprogramming and the in vivo development of SCNT embryos in cattle. PLoS ONE. 2012;7:e36181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Torner H, Ghanem N, Ambros C, Holker M, Tomek W, Phatsara C, et al. Molecular and subcellular characterisation of oocytes screened for their developmental competence based on glucose-6-phosphate dehydrogenase activity. Reproduction. 2008;135:197–212.

    Article  CAS  PubMed  Google Scholar 

  9. Roca J, Martinez E, Vazquez JM, Lucas X. Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test. Reprod Fertil Dev. 1998;10:479–85.

    Article  CAS  PubMed  Google Scholar 

  10. Catala MG, Izquierdo D, Uzbekova S, Morato R, Roura M, Romaguera R, et al. Brilliant Cresyl Blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep. Reproduction. 2011;142:517–27.

    Article  CAS  PubMed  Google Scholar 

  11. Alm H, Torner H, Lohrke B, Viergutz T, Ghoneim IM, Kanitz W. Bovine blastocyst development rate in vitro is influenced by selection of oocytes by brillant cresyl blue staining before IVM as indicator for glucose-6-phosphate dehydrogenase activity. Theriogenology. 2005;63:2194–205.

    Article  CAS  PubMed  Google Scholar 

  12. Karja NW, Wongsrikeao P, Murakami M, Agung B, Fahrudin M, Nagai T, et al. Effects of oxygen tension on the development and quality of porcine in vitro fertilized embryos. Theriogenology. 2004;62:1585–95.

    Article  PubMed  Google Scholar 

  13. Mo X, Wu G, Yuan D, Jia B, Liu C, Zhu S, et al. Leukemia inhibitory factor enhances bovine oocyte maturation and early embryo development. Mol Reprod Dev. 2014;81:608–18.

    Article  CAS  PubMed  Google Scholar 

  14. Choe C, Shin YW, Kim EJ, Cho SR, Kim HJ, Choi SH, et al. Synergistic effects of glutathione and beta-mercaptoethanol treatment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with L-cysteine. J Reprod Dev. 2010;56:575–82.

    Article  CAS  PubMed  Google Scholar 

  15. Dehghani-Mohammadabadi M, Salehi M, Farifteh F, Nematollahi S, Arefian E, Hajjarizadeh A, et al. Melatonin modulates the expression of BCL-xl and improve the development of vitrified embryos obtained by IVF in mice. J Assist Reprod Genet. 2014;31:453–61.

    Article  PubMed  Google Scholar 

  16. Vanella A, Russo A, Acquaviva R, Campisi A, Di Giacomo C, Sorrenti V, et al. L -propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector. Cell Biol Toxicol. 2000;16:99–104.

    Article  CAS  PubMed  Google Scholar 

  17. Stojkovic M, Machado SA, Stojkovic P, Zakhartchenko V, Hutzler P, Goncalves PB, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod. 2001;64:904–9.

    Article  CAS  PubMed  Google Scholar 

  18. Gulcin I. Antioxidant and antiradical activities of L-carnitine. Life Sci. 2006;78:803–11.

    Article  PubMed  Google Scholar 

  19. Qi SN, Zhang ZF, Wang ZY, Yoshida A, Ueda T. L-carnitine inhibits apoptotic DNA fragmentation induced by a new spin-labeled derivative of podophyllotoxin via caspase-3 in Raji cells. Oncol Rep. 2006;15:119–22.

    CAS  PubMed  Google Scholar 

  20. Winter BK, Fiskum G, Gallo LL. Effects of L-carnitine on serum triglyceride and cytokine levels in rat models of cachexia and septic shock. Br J Cancer. 1995;72:1173–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Abdelrazik H, Sharma R, Mahfouz R, Agarwal A. L-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil Steril. 2009;91:589–96.

    Article  CAS  PubMed  Google Scholar 

  22. Cook JA, Pass HI, Iype SN, Friedman N, DeGraff W, Russo A, et al. Cellular glutathione and thiol measurements from surgically resected human lung tumor and normal lung tissue. Cancer Res. 1991;51:4287–94.

    CAS  PubMed  Google Scholar 

  23. Agarwal A, Allamaneni SS, Said TM. Chemiluminescence technique for measuring reactive oxygen species. Reprod BioMed Online. 2004;9:466–8.

    Article  CAS  PubMed  Google Scholar 

  24. Sharma RK, Agarwal A. Role of reactive oxygen species in gynecologic diseases. Reprod Med Biol. 2004;3:177–99.

    Article  CAS  Google Scholar 

  25. Zuccotti M, Boiani M, Ponce R, Guizzardi S, Scandroglio R, Garagna S, et al. Mouse Xist expression begins at zygotic genome activation and is timed by a zygotic clock. Mol Reprod Dev. 2002;61:14–20.

    Article  CAS  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sirard MA, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65:126–36.

    Article  PubMed  Google Scholar 

  28. Opiela J, Lipinski D, Slomski R, Katska-Ksiazkiewicz L. Transcript expression of mitochondria related genes is correlated with bovine oocyte selection by BCB test. Anim Reprod Sci. 2010;118:188–93.

    Article  CAS  PubMed  Google Scholar 

  29. Thiyagarajan B, Valivittan K. Ameliorating effect of vitamin E on in vitro development of preimplantation buffalo embryos. J Assist Reprod Genet. 2009;26:217–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Kowaltowski AJ, Vercesi AE. Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med. 1999;26:463–71.

    Article  CAS  PubMed  Google Scholar 

  31. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Shanti A, Santanam N, Morales AJ, Parthasarathy S, Murphy AA. Autoantibodies to markers of oxidative stress are elevated in women with endometriosis. Fertil Steril. 1999;71:1115–8.

    Article  CAS  PubMed  Google Scholar 

  33. Karuputhula NB, Chattopadhyay R, Chakravarty B, Chaudhury K. Oxidative status in granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med. 2013;59:91–8.

    Article  CAS  PubMed  Google Scholar 

  34. Natarajan R, Shankar MB, Munuswamy D. Effect of alpha-tocopherol supplementation on in vitro maturation of sheep oocytes and in vitro development of preimplantation sheep embryos to the blastocyst stage. J Assist Reprod Genet. 2010;27:483–90.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Fenkci SM, Fenkci V, Oztekin O, Rota S, Karagenc N. Serum total L-carnitine levels in non-obese women with polycystic ovary syndrome. Hum Reprod. 2008;23:1602–6.

    Article  CAS  PubMed  Google Scholar 

  36. Wu GQ, Jia BY, Li JJ, Fu XW, Zhou GB, Hou YP, et al. L-carnitine enhances oocyte maturation and development of parthenogenetic embryos in pigs. Theriogenology. 2011;76:785–93.

    Article  CAS  PubMed  Google Scholar 

  37. You J, Lee J, Hyun SH, Lee E. L-carnitine treatment during oocyte maturation improves in vitro development of cloned pig embryos by influencing intracellular glutathione synthesis and embryonic gene expression. Theriogenology. 2012;78:235–43.

    Article  CAS  PubMed  Google Scholar 

  38. Rausell F, Pertusa JF, Gomez-Piquer V, Hermenegildo C, Garcia-Perez MA, Cano A, et al. Beneficial effects of dithiothreitol on relative levels of glutathione S-transferase activity and thiols in oocytes, and cell number, DNA fragmentation and allocation at the blastocyst stage in the mouse. Mol Reprod Dev. 2007;74:860–9.

    Article  CAS  PubMed  Google Scholar 

  39. Luberda Z. The role of glutathione in mammalian gametes. Reprod Biol. 2005;5:5–17.

    PubMed  Google Scholar 

  40. Yoshida M, Ishigaki K, Nagai T, Chikyu M, Pursel VG. Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol Reprod. 1993;49:89–94.

    Article  CAS  PubMed  Google Scholar 

  41. Somfai T, Kaneda M, Akagi S, Watanabe S, Haraguchi S, Mizutani E, et al. Enhancement of lipid metabolism with L-carnitine during in vitro maturation improves nuclear maturation and cleavage ability of follicular porcine oocytes. Reprod Fertil Dev. 2011;23:912–20.

    Article  CAS  PubMed  Google Scholar 

  42. Jeulin C, Lewin LM. Role of free L-carnitine and acetyl-L-carnitine in post-gonadal maturation of mammalian spermatozoa. Hum Reprod Update. 1996;2:87–102.

    Article  CAS  PubMed  Google Scholar 

  43. Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod. 2010;83:909–18.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou W, Xiang T, Walker S, Farrar V, Hwang E, Findeisen B, et al. Global gene expression analysis of bovine blastocysts produced by multiple methods. Mol Reprod Dev. 2008;75:744–58.

    Article  CAS  PubMed  Google Scholar 

  45. Racedo SE, Wrenzycki C, Lepikhov K, Salamone D, Walter J, Niemann H. Epigenetic modifications and related mRNA expression during bovine oocyte in vitro maturation. Reprod Fertil Dev. 2009;21:738–48.

    Article  CAS  PubMed  Google Scholar 

  46. Salhab M, Dhorne-Pollet S, Auclair S, Guyader-Joly C, Brisard D, Dalbies-Tran R, et al. In vitro maturation of oocytes alters gene expression and signaling pathways in bovine cumulus cells. Mol Reprod Dev. 2013;80:166–82.

    Article  CAS  PubMed  Google Scholar 

  47. Paradis F, Novak S, Murdoch GK, Dyck MK, Dixon WT, Foxcroft GR. Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction. 2009;138:115–29.

    Article  CAS  PubMed  Google Scholar 

  48. Lee SE, Kim EY, Choi HY, Moon JJ, Park MJ, Lee JB, et al. Rapamycin rescues the poor developmental capacity of aged porcine oocytes. Asian-Australas J Anim Sci. 2014;27:635–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Hussein TS, Thompson JG, Gilchrist RB. Oocyte-secreted factors enhance oocyte developmental competence. Dev Biol. 2006;296:514–21.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang DX, Park WJ, Sun SC, Xu YN, Li YH, Cui XS, et al. Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation. J Reprod Dev. 2011;57:49–56.

    Article  CAS  PubMed  Google Scholar 

  51. De Smedt V, Poulhe R, Cayla X, Dessauge F, Karaiskou A, Jessus C, et al. Thr-161 phosphorylation of monomeric Cdc2. Regulation by protein phosphatase 2C in Xenopus oocytes. J Biol Chem. 2002;277:28592–600.

    Article  PubMed  Google Scholar 

  52. Kim KH, Kim EY, Kim Y, Kim E, Lee HS, Yoon SY, et al. Gas6 downregulation impaired cytoplasmic maturation and pronuclear formation independent to the MPF activity. PLoS ONE. 2011;6:e23304.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Takahashi T, Inaba Y, Somfai T, Kaneda M, Geshi M, Nagai T, et al. Supplementation of culture medium with L-carnitine improves development and cryotolerance of bovine embryos produced in vitro. Reprod Fertil Dev. 2013;25:589–99.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was financially supported by Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Salehi.

Additional information

Capsule L-carnitine supplementation during IVM of immature BCB+ oocytes improved cytoplasmic and nuclear maturation of mouse oocytes and enhanced preimplantation developmental competence of embryos after IVF.

Zohreh Zare and Reza Masteri Farahani contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, Z., Masteri Farahani, R., Salehi, M. et al. Effect of L-carnitine supplementation on maturation and early embryo development of immature mouse oocytes selected by brilliant cresyle blue staining. J Assist Reprod Genet 32, 635–643 (2015). https://doi.org/10.1007/s10815-015-0430-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-015-0430-5

Keywords

Navigation