Skip to main content
Log in

Protein modification as oxidative stress marker in follicular fluid from women with polycystic ovary syndrome: the effect of inositol and metformin

  • Gonadal Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate the oxidative stress status (OS) of follicular fluid (FF) and the oocyte quality in women with polycystic ovary syndrome (PCOS) undergoing different ovarian stimulation protocols.

Methods

FF samples were collected after gonadotropin administration in association or not with metformin or D-chiro-inositol (DCI). OS status was then evaluated by checking the follicular fluid protein oxidation profile after specific labeling of aminoacidic free–SH groups, and two-dimensional electrophoresis followed by qualitative and semiquantitative analysis. Oocyte quality was assessed by international morphological criteria.

Results

Our data indicated that both treatments, even if to different extent, recovered a significantly high level of free–SH groups in FF proteins of PCOS women clearly indicating a decrease of OS level with respect to that found in FF samples from gonadotropins alone treated women. A higher number of good quality MII oocytes was also observed in DCI (P < 0.05) or metformin (P < 0.05) study groups in comparison to untreated control group.

Conclusion

A natural supplement and a drug both showed a statistically significant positive effect on follicular milieu by decreasing the oxidative damage on FF proteins, as well as in recovering good quality oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Agarwal A, Aponte- Mellado A, Premkumar BJ, Shaman A, Gupta S. The effect of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:49.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nestler JE. Role of hyperinsulinemia in the pathogenesis of the polycystic ovary syndrome, and its clinical implications. Semin Reprod Endocrinol. 1997;15:111–2.

    Article  PubMed  CAS  Google Scholar 

  4. Bausenwein J, Serke H, Eberle K, Hirrlinger J, Jogschies P, Hmeidan FA, et al. Elevated levels of oxidized low-density lipoprotein and of catalase activity in follicular fluid of obese women. Mol Hum Reprod. 2010;16(2):117–24.

    Article  PubMed  CAS  Google Scholar 

  5. Chattopadhayay R, Ganesh A, Samanta J, Jana SK, Chakravarty BN, Chaudhury K. Effect of follicular fluid oxidative stress on meiotic spindle formation in infertile women with polycystic ovarian syndrome. Gynecol Obstet Invest. 2010;69(3):197–202.

    Article  PubMed  CAS  Google Scholar 

  6. Glueck CJ, Streicher P, Wang P. treatment of polycystic ovary syndrome with insulin lowering agents. Expert Opin Pharmacother. 2002;8:1177–89.

    Google Scholar 

  7. De Leo V, La Marca A, Petraglia F. Insulin-lowering agents in the management of polycistic ovary syndrome. Endoc Rev. 2003;24:633–67.

    Article  Google Scholar 

  8. La Marca A, Carducci Artensio A, Stabile G, Volpe A. Metformin treatment of PCOS during adolescence and the reproductive period. Eur J Obstet Gynecol Reprod Biol. 2005;121:3–7.

    Article  PubMed  Google Scholar 

  9. Baillargeon JP, Iuorno MJ, Jakubowicz DJ, Apridonidze T, He N, Nestler JE. Metformin therapy increases insulin-stimulated release of d-chiro-inositol-containing inositolphosphoglycan mediator in women with polycystic ovary syndrome. Clin Endocrinol Metab. 2004;89:242–9.

    Article  CAS  Google Scholar 

  10. Nestler JE, Jacubowicz DJ, Reamer P, Gunn RD, Allan G. Ovulatory and metabolic effects of D-chiro-inositol in the polycystic ovary syndrome. N Engl J Med. 1999;340:1314–20.

    Article  PubMed  CAS  Google Scholar 

  11. Schimberni M. The use of nutritional supplements in the treatment of male factor infertility. In “Supplements and herbal remedies. Featured in obstetrics and gynecology.” 2006 CIC international Ed.; 38–40.

  12. Baillargeon JP, Nestler JE, Ostlund RE, Apridonidze T, Diamanti- Kandarakis E. Greek hyperinsulinemic women, with or without polycystic ovary syndrome, display altered inositols metabolism. Hum Reprod. 2008;23:1439–46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Papaleo E, Unfer V, Baillargeon JP, De Santis L, Fusi F, Occhi F. Myo-inositol may improve oocyte quality in intracytoplasmic sperm injection cycles. A prospective, controlled, randomized trial. Fertil Steril. 2009;91:1750–4.

    Article  PubMed  CAS  Google Scholar 

  14. Morgante G, Orvieto R, Di Sabatino A, Musacchio MC, De Leo V. The role of inositol supplementation in patients with polycystic ovary syndrome, with insulin resistance, undergoing the low-dose gonadotropin ovulation induction regimen. Fertil Steril. 2011;95:2642–4.

    Article  PubMed  CAS  Google Scholar 

  15. Eaton S. The biochemical basis of antioxidant therapy in critical illness. Proc Nutr Soc. 2006;65:242–9.

    Article  PubMed  CAS  Google Scholar 

  16. Leichert LI, Jakob U. Global methods to monitor the thiol-disulfide state of proteins in vivo. Antioxid Redox Signal. 2006;8:763–72.

    Article  PubMed  CAS  Google Scholar 

  17. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19:41–7.

    Article  Google Scholar 

  18. Alpha Scientist in Reproductive Medicine and ESHRE Special Interest Group of Embriology. The Instanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26:1270–83.

    Article  Google Scholar 

  19. De Lamirande E, Gagnon C. Paradoxical effect of reagents for sulphydryl and disulfide groups on human sperm capacitation and superoxide production. Free Radic Biol Med. 1998;25:803–17.

    Article  PubMed  Google Scholar 

  20. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  PubMed  CAS  Google Scholar 

  21. Görg A, Postel W, Gunther S. The current state of two dimensional electrophoresis with immobilized pH gradients. Electrophoresis. 1988;9:531–46.

    Article  PubMed  Google Scholar 

  22. Bjellvist B, Pasquali C, Ravier F, Sanchez JC, Ochstrasse DF. A nonlinear wide-range immobilized pH for two dimensional-electrophoresis and its definition in relevant pH scale. Electrophoresis. 1993;14:1357–65.

    Article  Google Scholar 

  23. Towbin H, Staehlin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76:4350–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Uttara B, Singh AV, Zamboni P, Mchajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Swamy M, Sirajudeen KN, Chardran G. Nitric oxide (NO), citrulline- NO cycle enzymes, glutamine synthetase, and oxidative status in kainic acidmediated excitotoxicity in rat brain. Drug Chem Toxicol. 2009;32:326–31.

    Article  PubMed  CAS  Google Scholar 

  26. Davies MJ, Donkor R, Dunster CA, Jonas S, Willson RL. Desferrioxamine (Desferal) and superoxide free radicals. Formation of an enzymedamaging nitroxide. Biochem J. 1987;246:725–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Salo DC, Pacifici RE, Lin SW, Giulivi C, Davies KJ. Superoxide dismutase undergoes proteolysis and fragmentation following oxidative modification and inactivation. J Biol Chem. 1990;265:11919–27.

    PubMed  CAS  Google Scholar 

  28. Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997;272:20313–6.

    Article  PubMed  CAS  Google Scholar 

  29. Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D, Marci R, et al. Cellular and molecular aspects of ovarian follicle ageing. Hum Reprod Update. 2008;14:131–42.

    Article  PubMed  CAS  Google Scholar 

  30. Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med. 2006;10:389–406.

    Article  PubMed  CAS  Google Scholar 

  31. Piomboni P, Stendardi A, Gambera L, Tatone C, Coppola L, De Leo V, et al. Protein modification as oxidative stress marker in normal and pathological human seminal plasma. Redox Rep. 2012;17:227–32.

    Article  PubMed  CAS  Google Scholar 

  32. Focarelli R, Stendardi A, Capaldo A, Piomboni P, Tatone C. Cellular and molecular aspects of ovarian follicle ageing. Congress Monograph “Reproductive ageing: a basic and clinical update”. Fertil and Steril. 2011;60:5.

    Google Scholar 

  33. Agarwall A, Virk G, Ong C, Du Plessis SS. Effects of oxidative stress on male reproduction. World J Mens Health. 2014;32:1–17.

    Article  Google Scholar 

  34. Guerriero G, Trocchia S, Abdel-Gawad FK, Ciarcia G. Roles of reactive oxygen species in the spermatogenesis regulation. Front Endocrinol. 2014;22:5–56.

    Google Scholar 

  35. Aitken RJ, Smith TB, Jobling MS, Baker MA, De Iuliis GN. Oxidative stress and male reproductive health. Asian J Androl. 2014;16:31–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Aitken RJ. The Amoroso Lecture. The human spermatozoon a cell in crisis? J Reprod Fertil. 1999;115:1–7.

    Article  PubMed  CAS  Google Scholar 

  37. Lavranos G, Balla M, Tzortzopoulou A, Syriou V, Angelopoulou R. Investigating ROS sources in male infertility: a common end for numerous pathways. Reprod Toxicol. 2012;34:298–307.

    Article  PubMed  CAS  Google Scholar 

  38. Gupta S, Ghulmiyyah J, Sharma R, Halabi J, Agarwal A. Power of Proteomics in Linking Oxidative Stress and Female Infertility. BioMed Research International. 2014.

  39. Agarwal A, Gupta S, Sekhon L, Shah R. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:1375–403.

    Article  PubMed  CAS  Google Scholar 

  40. Wiener-Megnazi Z, Vardi L, Lissak A, Shnizer S, Reznick AZ, Ishai D, et al. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil Steril. 2004;82:1171–6.

    Article  PubMed  CAS  Google Scholar 

  41. Attaran M, Pasqualotto E, Falcone T, Goldberg JM, Miller KF, Agarwal A, et al. The effect of follicular fluid reactive oxygen species on the outcome of in vitro fertilization. Int J Fertil Women Med. 2000;45:314–20.

    CAS  Google Scholar 

  42. Sugino N, Shimamura K, Takiguchi S, Tamura H, Ono M, Nakata M, et al. Changes in activity of superoxyde dismutase in the human endometrium throughout the menstrual cycle and in early pregnancy. Hum Reprod. 1996;11:1073–8.

    Article  PubMed  CAS  Google Scholar 

  43. Karuputhula NB, Chattopadhyay R, Chakravarty B, Chaudhury K. Oxidative status granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med. 2013;59:91–8.

    Article  PubMed  CAS  Google Scholar 

  44. Carbone MC, Tatone C, Delle Monache S, Marci R, Caserta D. Antioxidant enzymatic defences in human follicular fluid: characterization and age-dependent changes. Mol Hum Reprod. 2003;9:639–43.

    Article  PubMed  CAS  Google Scholar 

  45. Gonzàlez F, Rote NS, Minium J, Kirwan JP. Reactive oxygen speciesinduced oxidative stress in the development of insulin resistance and hyperandrogenism in polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91:336–40.

    Article  PubMed  Google Scholar 

  46. Gonzalez S, Sia CL, Shepard MH, Rote NS, Minuim J. Hyperglycemia-induced oxidative stress is independent of excess abdominal adiposity in normal-weight women with polycystic ovary syndrome. Hum Reprod. 2012;27:3560–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. González F, Nair KS, Daniels JK, Basal E, Schimke JM, Blair HE. Hyperandrogenism sensitizes leukocytes to hyperglycemia to promote oxidative stress in lean reproductive-age women. J Clin Endocrinol Metab. 2012;97:2836–43.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Van Blerkom J, Henry G. Oocyte dysmorphism and aneuploidy in meiotically mature human oocytes after ovarian stimulation. Hum Reprod. 1992;7:379–90.

    PubMed  Google Scholar 

  49. Victor VM, Rocha M, Bañuls C, Sanchez-Serrano M, Sola E, Gomez M, et al. Mitochondrial complex I impairment in leukocytes from polycystic ovary syndrome patients with insulin resistance. J Clin Endocrinol Metab. 2009;93:3505–12.

    Article  Google Scholar 

  50. Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013;19(3):268–88.

    Article  PubMed  CAS  Google Scholar 

  51. Zheng W, Nagaraju G, Liu Z, Liu K. Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol Cell Endocrinol. 2012;356:24–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. De Leo.

Additional information

Capsule D-Chiro-inositol and metformin both showed positive effects on follicular milieu by decreasing the oxidative damage on follicular fluid proteins and increasing oocyte quality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piomboni, P., Focarelli, R., Capaldo, A. et al. Protein modification as oxidative stress marker in follicular fluid from women with polycystic ovary syndrome: the effect of inositol and metformin. J Assist Reprod Genet 31, 1269–1276 (2014). https://doi.org/10.1007/s10815-014-0307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0307-z

Keywords

Navigation