Skip to main content

Advertisement

Log in

Syncytin-1 and its receptor is present in human gametes

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Main purpose and research question

To determine whether the true fusogen Syncytin-1 and its receptor (ASCT-2) is present in human gametes using qRT-PCR, immunoblotting and immunofluorescence.

Methods

Donated oocytes and spermatozoa, originating from a fertility center in tertiary referral university hospital, underwent qRT-PCR, immunoblotting and immunofluorescence analyzes.

Results

Quantitative RT-PCR of sperm samples from sperm donors showed that syncytin-1 is present in all samples, however, protein levels varied between donors. Syncytin-1 immunoreactivity predominates in the sperm head and around the equatorial segment. The receptor ASCT-2 is expressed in the acrosomal region and in the sperm tail. Moreover, ASCT-2, but not syncytin-1, is expressed in oocytes and the mRNA level increases with increasing maturity of the oocytes.

Conclusions

Syncytin and its receptor are present in human gametes and localization and temporal appearance is consistent with a possible role in fusion between oocyte and sperm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill J, editors. The physiology of reproduction. 2nd ed. New York: Raven; 1994. p. 189–317.

    Google Scholar 

  2. van Gestel RA, Brewis IA, Ashton PR, Brouwers JF, Gadella BM. Multiple proteins present in purified porcine sperm apical plasmamembranes interact with the zona pellucida of the oocyte. Mol Hum Reprod. 2007;13:445–54.

    Article  PubMed  Google Scholar 

  3. Nixon B, Mitchell LA, Anderson AL, Mclaughlin EA, O’bryan MK, Aitken RJ. Proteomic and functional analysis of human sperm detergent resistant membranes. J Cell Physiol. 2011;226:2651–65.

    Article  CAS  PubMed  Google Scholar 

  4. Blas GAD, Roggero CM, Tomes CN, Mayorga LS. Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol. 2005;3:e323.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Rodriguez F, Bustos MA, Zanetti MN, Ruete MC, Mayorga LS, Tomes CN. alfa-SNAP prevents docking of the acrosome during sperm exocytosis because it sequesters monomeric syntaxin. PLoS One. 2011;6:e21925.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nixon B, Aitken RJ, McLaughlin EA. New insights into the molecular mechanisms of sperm-egg interaction. Cell Mol Life Sci. 2007;64:1805–23.

    Article  CAS  PubMed  Google Scholar 

  7. Sutovsky P. Sperm–egg adhesion and fusion in mammals. Expert Rev Mol Med. 2009;11:e11.

    Article  PubMed  Google Scholar 

  8. Evans JP. Sperm-egg interaction. Annu Rev Physiol. 2012;74:477–502.

    Article  CAS  PubMed  Google Scholar 

  9. Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature. 2005;434:234–8.

    Article  CAS  PubMed  Google Scholar 

  10. Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP, Levy S, et al. Reduced fertility of female mice lacking CD81. Dev Biol. 2006;290:351–8.

    Article  CAS  PubMed  Google Scholar 

  11. Yunta M, Lazo PA. Tetraspanin proteins as organisers of membrane microdomains and signalling complexes. Cell Signal. 2003;15:559–64.

    Article  CAS  PubMed  Google Scholar 

  12. Oren-Suissa M, Podbilewicz B. Cell fusion during development. Trends Cell Biol. 2007;17:537–46.

    Article  CAS  PubMed  Google Scholar 

  13. Weissenhorn W, Hinz A, Gaudin Y. Virus membrane fusion. FEBS Lett. 2007;581:2150–5.

    Article  CAS  PubMed  Google Scholar 

  14. Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol. 2000;74:3321–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000;403:785–9.

    Article  CAS  PubMed  Google Scholar 

  16. Dupressoir A, Vernochet C, Bawa O, Harper F, Pierron G, Opolon P, et al. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci U S A. 2009;106:12127–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bjerregaard B, Talts JF, Larsson LI. The endogenous envelope protein syncytin is involved in myoblast fusion. In: Larsson LI, editor. Cell fusions, regulation and control. New York: Springer; 2011. p. 267–75.

    Chapter  Google Scholar 

  18. Søe K, Andersen TL, Hobolt-Pedersen AS, Bjerregaard B, Larsson LI, Delaissé JM. Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion. Bone. 2011;48:837–46.

    Article  PubMed  Google Scholar 

  19. Bjerregaard B, Holck S, Christensen IJ, Larsson LI. Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci. 2006;63:1906–11.

    Article  CAS  PubMed  Google Scholar 

  20. Strick R, Ackermann S, Langbein M, Swiatek J, Schubert SW, Hashemolhosseini S, et al. Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral syncytin-1 and regulated by TGF-beta. J Mol Med. 2007;85:23–38.

    Article  CAS  PubMed  Google Scholar 

  21. Lavillette D, Marin M, Ruggieri A, Mallet F, Cosset FL, Kabat D. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J Virol. 2000;76:6442–52.

    Article  Google Scholar 

  22. Mortensen K, Lichtenberg J, Thomasen PD, Larsen LI. Spontaneous fusion between cancer cells and endothelial cells. Cell Mol Life Sci. 2004;61:2125–31.

    Article  CAS  PubMed  Google Scholar 

  23. Yu C, Shen K, Lin M, Chen P, Lin C, Chang GD, et al. GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem. 2002;277:50062–8.

    Article  CAS  PubMed  Google Scholar 

  24. Ikawa M, Inoue N, Benham AM, Okabe M. Fertilization: a sperm’s journey to and interaction with the oocyte. J Clin Invest. 2010;120:984–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Mallet PJ, Stock CE, Fraser LR. Acrosome loss in human sperm incubated in vitro under capacitating conditions. Int J Androl. 1985;8:357–64.

    Article  Google Scholar 

  26. Green S, Fishel S, Rowe P. The incidence of spontaneous acrosome reaction in homogeneous populations of hyperactivated human spermatozoa. Hum Reprod. 1999;14:1819–22.

    Article  CAS  PubMed  Google Scholar 

  27. Bedford JM, Cooper GW. Membrane fusion events in the fertilization of vertebrate eggs. In: Poste G, Nicholson GL, editors. Cell surface reviews. Amsterdam: Elsevier/North-Holland Biomedical press; 1978. p. 65–125.

    Google Scholar 

  28. Ponferrada VG, Mauck BS, Wooley DP. The envelope glycoprotein of human endogenous retrovirus HERV-W induces cellular resistance to spleen necrosis virus. Arch Virol. 2003;148:659–75.

    Article  CAS  PubMed  Google Scholar 

  29. Potgens AJG, Drewlo S, Kokozidou M, Kaufmann P. Syncytin: the major regulator of trophoblast fusion? Recent developments and hypotheses on its action. Hum Reprod Update. 2004;10:487–96.

    Article  CAS  PubMed  Google Scholar 

  30. Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C. The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol. 2006;17:254–63.

    Article  CAS  PubMed  Google Scholar 

  31. Gordon-Alonso M, Yañez-Mó M, Barreiro O, Álvarez S, Muñoz-Fernández MÁ, Valenzuela-Fernández A, et al. Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion. J Immunol. 2006;177:5129–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Ethical statement

All participating persons gave their informed consent prior inclusion in the study. The Danish Ethical committee approval was obtained before the study was initiated (J. nr H-B-2008-150).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ziebe.

Additional information

Capsule Membrane fusion is an important part of fertilization. Here we present, for the first time, the presence of a true fusogen Syncytin-1 and its receptor on human gametes.

This work was conducted at The Fertility Clinic, Rigshospitalet and at the Faculty of Life Science, University of Copenhagen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerregaard, B., Lemmen, J.G., Petersen, M.R. et al. Syncytin-1 and its receptor is present in human gametes. J Assist Reprod Genet 31, 533–539 (2014). https://doi.org/10.1007/s10815-014-0224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0224-1

Keywords

Navigation