Skip to main content

Advertisement

Log in

Effects of oxygen tension and IGF-I on HIF-1α protein expression in mouse blastocysts

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Hypoxia inducible factors (HIFs) are key regulators of oxygen homeostasis in response to reduced oxygenation in somatic cells. In addition, HIF-1α protein can be also induced by insulin-like growth factor I (IGF-I) treatment in various cell lines under normoxic condition. However, the expression and function of HIF-1α in embryogenesis are still unclear. Therefore, the objectives of this study were to examine the expression of HIF-1α in mouse blastocysts cultured under hypoxic and normoxic conditions, and to determine whether oxygen tension and IGF-I influence embryonic development through stimulation of HIF-1α expression.

Methods

Mouse embryos were cultured from the 1-cell to blastocyst stage under 5 % or 20 % O2 in both the absence and presence of IGF-I.

Results

The embryonic development rates to the blastocyst stage were not affected by oxygen tension or IGF-I treatment. HIF-1α protein was localized to the cytoplasm of blastocysts, and its levels were independent of oxygen concentration or IGF-I treatment. Blastocysts cultured under 5 % O2 exhibited significantly higher total cell numbers (83.4 ± 18.1) and lower apoptotic index (3.7 ± 1.5) than those cultured under 20 % O2 (67.4 ± 15.6) (6.9 ± 3.5) (P < 0.05). IGF-I reduced the apoptotic index in both oxygen conditions, but a significant decrease was detected in the 20 % O2 group.

Conclusions

HIF-1α may not be a major mediator that responds to change in oxygen tension within blastocysts, inconsistent with that of somatic cells. Supplementation of culture media with IGF-I has been shown to promote embryo development by an anti-apoptotic effect, instead of increasing HIF-1α protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000;88:1474–80.

    PubMed  CAS  Google Scholar 

  2. Xu K, LaManna JC. Chronic hypoxia and the cerebral circulation. J Appl Physiol. 2006;100:725–30.

    Article  PubMed  CAS  Google Scholar 

  3. Carroll VA, Ashcroft M. Role of hypoxia-inducible factor (HIF)-1α versus HIF-2α in the regulation of HIF target genes in response to hypoxia, insulin-like growth factor-I, or loss of von hippel-lindau function: implications for targeting the HIF pathway. Cancer Res. 2006;66:6264.

    Article  PubMed  CAS  Google Scholar 

  4. Pringle KG, Kind KL, Sferruzzi-Perri AN, Thompson JG, Roberts CT. Beyond oxygen: complex regulation and activity of hypoxia inducible factors in pregnancy. Hum Reprod Updat. 2010;16:415.

    Article  CAS  Google Scholar 

  5. Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun. 2005;338:617–26.

    Article  PubMed  CAS  Google Scholar 

  6. Semenza GL. Pulmonary vascular responses to chronic hypoxia mediated by hypoxia-inducible factor 1. Proc Am Thorac Soc. 2005;2:68–70.

    Article  PubMed  CAS  Google Scholar 

  7. Harvey A, Kind KL, Pantaleon M, Armstrong DT, Thompson JG. Oxygen-regulated gene expression in bovine blastocysts. Biol Reprod. 2004;71:1108.

    Article  PubMed  CAS  Google Scholar 

  8. Harvey AJ, Santos AN, Kirstein M, Kind KL, Fischer B, Thompson JG. Differential expression of oxygen-regulated genes in bovine blastocysts. Mol Reprod Dev. 2007;74:290–9.

    Article  PubMed  CAS  Google Scholar 

  9. Kind KL, Collett RA, Harvey AJ, Thompson JG. Oxygen regulated expression of GLUT 1, GLUT 3, and VEGF in the mouse blastocyst. Mol Reprod Dev. 2005;70:37–44.

    Article  PubMed  CAS  Google Scholar 

  10. Richard DE, Berra E, Pouysségur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1α in vascular smooth muscle cells. J Biol Chem. 2000;275:26765–71.

    PubMed  CAS  Google Scholar 

  11. Catrina SB, Botusan IR, Rantanen A, Catrina AI, Pyakurel P, Savu O, et al. Hypoxia-inducible factor-1α and hypoxia-inducible factor-2α are expressed in kaposi sarcoma and modulated by insulin-like growth factor-I. Clin Cancer Res. 2006;12:4506–14.

    Article  PubMed  CAS  Google Scholar 

  12. Bárdos JI, Ashcroft M. Hypoxia–inducible factor–1 and oncogenic signalling. Bioessays. 2004;26:262–9.

    Article  PubMed  Google Scholar 

  13. Fukuda R, Hirota K, Fan F, Jung YD, Ellis LM, Semenza GL. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem. 2002;277:38205.

    Article  PubMed  CAS  Google Scholar 

  14. Byrne A, Southgate J, Brison D, Leese H. Effects of insulin-like growth factors I and II on tumour-necrosis-factor-a-induced apoptosis in early murine embryos. Reprod Fertil Dev. 2002;14:79–83.

    Article  PubMed  CAS  Google Scholar 

  15. Harvey MB, Kaye PL. Insulin–like growth factor–1 stimulates growth of mouse preimplantation embryos in vitro. Mol Reprod Dev. 1992;31:195–9.

    Article  PubMed  CAS  Google Scholar 

  16. Herrler A, Krusche CA, Beier HM. Insulin and insulin-like growth factor-I promote rabbit blastocyst development and prevent apoptosis. Biol Reprod. 1998;59:1302–10.

    Article  PubMed  CAS  Google Scholar 

  17. Spanos S, Becker DL, Winston RML, Hardy K. Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol Reprod. 2000;63:1413–20.

    Article  PubMed  CAS  Google Scholar 

  18. Byrne A, Southgate J, Brison D, Leese H. Regulation of apoptosis in the bovine blastocyst by insulin and the insulin–like growth factor (IGF) superfamily. Mol Reprod Dev. 2002;62:489–95.

    Article  PubMed  CAS  Google Scholar 

  19. Fabian D, Il’ková G, Rehák P, Czikková S, Baran V, Koppel J. Inhibitory effect of IGF-I on induced apoptosis in mouse preimplantation embryos cultured in vitro. Theriogenology. 2004;61:745–55.

    Article  PubMed  CAS  Google Scholar 

  20. Dai M, Cui P, Yu M, Han J, Li H, Xiu R. Melatonin modulates the expression of VEGF and HIF–1α induced by CoCl2 in cultured cancer cells. Journal of pineal research. 2008;44:121–6.

    Article  PubMed  CAS  Google Scholar 

  21. Thouas G, Korfiatis N, French A, Jones G, Trounson A. Simplified technique for differential staining of inner cell mass and trophectoderm cells of mouse and bovine blastocysts. Reprod BioMed Online. 2001;3:25–9.

    Article  PubMed  Google Scholar 

  22. Cui XS, Shen XH, Kim NH. High mobility group box 1 (HMGB1) is implicated in preimplantation embryo development in the mouse. Mol Reprod Dev. 2008;75:1290–9.

    Article  PubMed  CAS  Google Scholar 

  23. Dumoulin JCM, Meijers CJJ, Bras M, Coonen E, Geraedts JPM, Evers JLH. Effect of oxygen concentration on human in-vitro fertilization and embryo culture*. Hum Reprod. 1999;14:465–9.

    Article  PubMed  CAS  Google Scholar 

  24. Quinn P, Harlow GM. The effect of oxygen on the development of preimplantation mouse embryos in vitro. Journal of Experimental Zoology. 1978;206:73–80.

    Article  PubMed  CAS  Google Scholar 

  25. Thompson J, Simpson A, Pugh P, Donnelly P, Tervit H. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil. 1990;89:573–8.

    Article  PubMed  CAS  Google Scholar 

  26. Waldenström U, Engström AB, Hellberg D, Nilsson S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril. 2009;91:2461–5.

    Article  PubMed  Google Scholar 

  27. Harvey AJ, Kind KL, Thompson JG. Regulation of gene expression in bovine blastocysts in response to oxygen and the iron chelator desferrioxamine. Biol Reprod. 2007;77:93.

    Article  PubMed  CAS  Google Scholar 

  28. Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev. 1998;8:588–94.

    Article  PubMed  CAS  Google Scholar 

  29. Berchner-Pfannschmidt U, Frede S, Wotzlaw C, Fandrey J. Imaging of the hypoxia-inducible factor pathway: insights into oxygen sensing. Eur Respir J. 2008;32:210–7.

    Article  PubMed  CAS  Google Scholar 

  30. Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Shui QY, et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 2005;105:659–69.

    Article  PubMed  CAS  Google Scholar 

  31. Treins C, Giorgetti-Peraldi S, Murdaca J, Van Obberghen E. Regulation of vascular endothelial growth factor expression by advanced glycation end products. J Biol Chem. 2001;276:43836–41.

    Article  PubMed  CAS  Google Scholar 

  32. Harvey A, Collett R, Kind K, Thompson J. Expression of hypoxia-inducible factor-1a during mouse preimplantation embryo development. Theriogenology. 2002;57:496.

    Google Scholar 

  33. Thompson J, Feil D, Edwards L, Lane Michelle, Karen K (2004) Mouse fetal development is perturbed by culture in low oxygen concentration that increases expression of oxygen-sensitive genes via hypoxia inducible factors: A non-epigenetic embryonic programming phenomenon? The Society for the Study of Reproduction 547

  34. Wenger RH. Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol. 2000;203:1253–63.

    PubMed  CAS  Google Scholar 

  35. Fryer BH, Simon MC. Hypoxia, HIF and the placenta. Cell Cycle. 2006;5:495–8.

    Article  PubMed  CAS  Google Scholar 

  36. Cowden Dahl KD, Fryer BH, Mack FA, Compernolle V, Maltepe E, Adelman DM, et al. Hypoxia-inducible factors 1α and 2α regulate trophoblast differentiation. Mol Cell Biol. 2005;25:10479–91.

    Article  PubMed  CAS  Google Scholar 

  37. Slomiany MG, Rosenzweig SA. IGF-1–induced VEGF and IGFBP-3 secretion correlates with increased HIF-1α expression and activity in retinal pigment epithelial cell line D407. Investig Ophthalmol Vis Sci. 2004;45:2838–47.

    Article  Google Scholar 

  38. Treins C, Giorgetti-Peraldi S, Murdaca J, Monthouël-Kartmann MN, Van Obberghen E. Regulation of hypoxia-inducible factor (HIF)-1 activity and expression of HIF hydroxylases in response to insulin-like growth factor I. Mol Endocrinol. 2005;19:1304–17.

    Article  PubMed  CAS  Google Scholar 

  39. O'Connor R (1998) Survival factors and apoptosis. Apoptosis 137–66

  40. Rubin R, Baserga R. Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab Investig J Tech Methods Pathol. 1995;73.

  41. Jousan FD, Hansen PJ. Insulin–like growth factor–I promotes resistance of bovine preimplantation embryos to heat shock through actions independent of its anti–apoptotic actions requiring PI3K signaling. Mol Reprod Dev. 2007;74:189–96.

    Article  PubMed  CAS  Google Scholar 

  42. Gross VS, Hess M, Cooper GM. Mouse embryonic stem cells and preimplantation embryos require signaling through the phosphatidylinositol 3–kinase pathway to suppress apoptosis. Mol Reprod Dev. 2004;70:324–32.

    Article  Google Scholar 

  43. Goto Y, Noda Y, Narimoto K, Umaoka Y, Mori T. Oxidative stress on mouse embryo development in vitro. Free Radic Biol Med. 1992;13:47–53.

    Article  PubMed  CAS  Google Scholar 

  44. Fujitani Y, Kasai K, Ohtani S, Nishimura K, Yamada M, Utsumi K. Effect of oxygen concentration and free radicals on in vitro development of in vitro-produced bovine embryos. J Anim Sci. 1997;75:483–9.

    PubMed  CAS  Google Scholar 

  45. Hashimoto S, Minami N, Takakura R, Yamada M, Imai H, Kashima N. Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus–oocyte complexes. Mol Reprod Dev. 2000;57:353–60.

    Article  PubMed  CAS  Google Scholar 

  46. Johnson MH, Nasresfahani MH. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays. 1994;16:31–8.

    Article  PubMed  CAS  Google Scholar 

  47. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62:1186–97.

    Article  PubMed  CAS  Google Scholar 

  48. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod. 1998;13:998–1002.

    Article  PubMed  CAS  Google Scholar 

  49. Rinaudo PF, Giritharan G, Talbi S, Dobson AT, Schultz RM. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86:1265. e1-. e36.

    Article  Google Scholar 

Download references

Acknowledgments

None

Conflict of interest

The authors declare no conflict of interest in this study. This research was supported in part by Korea University Education and Research Foundation (YK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ko.

Additional information

Capsule Reduced oxygen tension along with IGF-I supplementation can increase the developmental potential of mouse blastocysts, and this may be attributed to the suppression of apoptosis, but not to an influence of HIF-1α expression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, J., Juhn, KM., Ko, JK. et al. Effects of oxygen tension and IGF-I on HIF-1α protein expression in mouse blastocysts. J Assist Reprod Genet 30, 99–105 (2013). https://doi.org/10.1007/s10815-012-9902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9902-z

Keywords

Navigation