Skip to main content

Advertisement

Log in

Plasmon Enhancement of Electronic Energy Transfer Between Quantum Dots on the Surface of Nanoporous Silica

  • Published:
Journal of Applied Spectroscopy Aims and scope

We use spectral kinetic methods to study electronic energy transfer processes between semiconductor quantum dots on the surface of wide-pore silica in the absence of and in the presence of silver nanoparticles, obtained by laser ablation methods. We have determined the efficiencies of dipole–dipole energy transfer between two-shell (CdSe/CdS/ZnS) and one-shell (CdSe/ZnS) quantum dots on the surface, the luminescence lifetimes and quantum yields, transfer distances and transfer rate constants. We have studied enhancement of photoprocesses in individual quantum dots and in a pair under the influence of resonant localized plasmons of ablative silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. I. Klimov, Nanocrystal Quantum Dots, 2nd edn., CRC Press (2010).

  2. A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots [in Russian], Nauka, St. Petersburg (2011).

    Google Scholar 

  3. S. V. Gaponenko, Introduction to Nanophotonics, Cambridge University Press (2010).

  4. A. G. Vitukhnovskii, A. A. Vashchenko, V. S. Lebedev, R. B. Vasil′ev, P. N. Brunkov, and D. N. Bychkovskii, Fiz. Tekh. Poluprovodn., 47, No. 7, 962–969 (2013).

  5. A. A. Zarubanov, K. S. Zhuravlev, T. A. Duda, and A. V. Okotrub, Pis'ma Zh. Éksp. Teor. Fiz., 95, No. 7, 403–407 (2012).

    Google Scholar 

  6. C. Higgins, M. Lunz, A. L. Bradley, V. A. Gerard, S. Byrne, Y. K. Gounko, V. Lesnyak, and N. Gaponik, Opt. Express, 18, No. 24, 24486–24494 (2014).

    Article  ADS  Google Scholar 

  7. A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fischer, M. G. Bawendi, and H. Mattoussi, J. Am. Chem. Soc., 126, 301–310 (2004).

    Article  Google Scholar 

  8. A. O. Orlova, M. S. Gubanova, V. G. Maslov, G. N. Vinogradova, A. V. Baranov, A. V. Fedorov, and I. Gunko, Opt. Spektrosk., 108, No. 6, 975–982 (2010).

    Google Scholar 

  9. V. V. Danilov, A. S. Panfutova, G. M. Ermolaeva, A. I. Khrebtov, and V. B. Shilov, Opt. Spektrosk., 114, No. 6, 967–972 (2013) [V. V. Danilov, A. S. Panfutova, G. M. Ermolaeva, A. I. Khrebtov, and V. B. Shilov, Opt. Spectrosc., 114, No. 6, 880–885 (2013) (English translation)].

  10. N. A. Myslitskaya, I. G. Samusev, and V. V. Bryukhanov, Izv. Vuzov. Fizika, 57, No. 7, 52–59 (2014).

    Google Scholar 

  11. M. Ghali, J. Lumin., 130, 1254–1257 (2010).

    Article  Google Scholar 

  12. Z. Li, Y. Wang, G. Zhang, W. Xu, and Y. Han, J. Lumin., 130, 995–999 (2010).

    Article  Google Scholar 

  13. M. A. Shivkumar, K. S. Adarsh, and S. R. Inamdar, J. Lumin., 143, 680–686 (2013).

    Article  Google Scholar 

  14. E. I. Zenkevich, A. P. Stupak, C. Goehler, C. Krasselt, and C. von Borczyskowski, ACS Nano, 9, No. 3, 2886–2903 (2015).

    Article  Google Scholar 

  15. M. Henini, Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, Elsevier Science and Technology Books (2008).

  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn., Springer, New York (2006).

    Book  Google Scholar 

  17. D. Kowerko, J. Schuster, N. Amecke, M. Abdel-Mottaleb, R. Dobrawa, F. Würthner, and C. von Borczyskowski, Phys. Chem. Chem. Phys., 12, 4112–4123 (2010).

    Article  Google Scholar 

  18. E. I. Zenkevich, E. I. Sagun, V. N. Knyukshto, A. S. Stasheuski, V. A. Galievsky, A. P. Stupak, T. Blaudeck, and C. von Borczyskowski, J. Phys. Chem. C, 115, 21535–21545 (2011).

    Article  Google Scholar 

  19. A. Al. Salman, A. Tortschanoff, G. van der Zwan, F. van Mourik, and M. Chergui, Chem. Phys., 357, 96–101 (2009).

  20. R. Schmidt, C. Krasselt, C. Göhler, and C. von Borczyskowski, ACS Nano, 8, 3505–3521 (2014).

    Google Scholar 

  21. M. N. Berberan-Santosh and E. N. Bodunov, Opt. Spektrosk., 97, No. 3, 400–405 (2004) [M. N. Berberan-Santos and E. N. Bodunov, Opt. Spectrosc., 97, No. 3, 375–380 (2004) (English translation)].

  22. A. V. Fedorov, A. V. Baranov, and I. D. Rukhlenko, Phys. Rev., 76, 0453332–1 – 045332–7 (2007).

  23. E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyanskii, Zh. Eksp. Teor. Fiz., 144, No. 2(8), 243–252 (2013).

  24. A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Quantum Dots [in Russian], UITMiO, St. Petersburg (2011).

    Google Scholar 

  25. V. V. Bryukhanov, B. F. Minaev, A. V. Tsibul’nikova, N. S. Tikhomirova, and V. A. Slezhkin, Opt. Zh., 81, No. 11, 7–14 (2014).

    Google Scholar 

  26. V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  27. V. M. Agranovich and M. D. Galanin, Transfer of Electronic Excitation Energy in Condensed Media [in Russian], Nauka, Moscow (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Samusev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 6, pp. 885–893, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhomirova, N.S., Myslitskaya, N.A., Samusev, I.G. et al. Plasmon Enhancement of Electronic Energy Transfer Between Quantum Dots on the Surface of Nanoporous Silica. J Appl Spectrosc 82, 961–969 (2016). https://doi.org/10.1007/s10812-016-0212-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0212-6

Keywords

Navigation