Skip to main content
Log in

Investigating (R)-3-Methylcyclopentanone Conformers Using Temperature-Dependent Raman Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

Recorded temperature-dependent Raman spectra of neat (R)-3-methylcyclopentanone (R3MCP) over the Raman active C–H stretch region (2850–3000 cm–1) are being employed to determine conformer energy difference (ΔH° = 4.83 ± 0.45 kJ/mol) between R3MCP equatorial-methyl and axial-methyl isomers. Upon comparison with spectra obtained at room temperature, crystalline R3MCP Raman spectra recorded at liquid nitrogen temperature (~77 K) are being utilized to assist identifying Raman vibrational modes a rising due to R3MCP equatorial and axial conformers. Correspondingly, density functional theory calculations (correlation function type B3LYP using a moderate 6-31G* and large aug-cc-pVDZ basis sets) are also manipulated to obtain highly resolved Raman spectra for the optimized geometries of equatorial and axial conformers, which are also used to help identify vibrational modes a rising due to each conformer. Reported calculated spectra of the individual R3MCP conformers are shown to have good agreement with corresponding experimental Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Duax, C. M. Weeks, and D. C. Rohrer, Top. Stereochem., 9, 271–383 (1976).

    Google Scholar 

  2. T. P. Pitner, W. B. Edwards, R. L. Bassfi eld, and J. F. Whidby, J. Am. Chem. Soc., 100, 246–251 (1978)

    Article  Google Scholar 

  3. Z. Dzakula, M. L. DeRider, and J. L. Markley, J. Am. Chem. Soc., 118, 12796–12803 (1996).

    Article  Google Scholar 

  4. F. V. Brutcher, Jr., T. Roberts, S. J. Barr, and N. Pearson, J. Am. Chem. Soc., 81, 4915–4920 (1959).

    Article  Google Scholar 

  5. J. He, A. G. Petrovic, and P. L. Polavarapu, J. Phys. Chem. B, 108, 20451–20457 (2004).

    Article  Google Scholar 

  6. R. Boese, H. Oberhammer, P. Pulay, and A. Waterfeld, J. Phys. Chem., 97, 9625–9629 (1993).

    Article  Google Scholar 

  7. W. Al-Basheer, R. M. Pagni, and R. N. Compton, J. Phys. Chem. A, 111, 2293–2298 (2007).

    Article  Google Scholar 

  8. Y. S. Li, J. Mol. Spectrosc., 104, 302–307 (1984).

    Google Scholar 

  9. F. S. Richardson, D. D. Shillady, and J. E. Bloor, J. Phys. Chem., 75, 2466–2479 (1971).

    Article  Google Scholar 

  10. J. P. Flament and H. P. Gervais, Tetrahedron, 36, 1949–1952 (1980).

    Article  Google Scholar 

  11. A. R. Potts, D. R. Nesselrodt, T. Baer, J. W. Driscoll, and J. P. Bays, J. Phys. Chem., 99, 12090–12098 (1995).

    Article  Google Scholar 

  12. D. Kim and T. Baer, Chem. Phys., 256, 251–258 (2000).

    Article  ADS  Google Scholar 

  13. R. Li, R. Sullivan, W. Al-Basheer, R. M. Pagni, and R. N. Compton, J. Chem. Phys., 125, 144304(1–8) (2006).

  14. W. Al-Basheer, J. Sol. Chem., 41, 1495–1506 (2012).

    Article  Google Scholar 

  15. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B, 37, 785–789 (1988).

    Article  ADS  Google Scholar 

  16. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, New York, Oxford University Press (1989).

    Google Scholar 

  17. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  18. P. L. Polavarapu, J. Phys. Chem., 94, 8106–8112 (1990).

    Article  Google Scholar 

  19. P. L. Polavarapu, P. K. Bose, L. Hecht, and L. D. Barron, J. Phys. Chem., 97, 11211–11215 (1993).

    Article  Google Scholar 

  20. V. Krishnakumar, G. Keresztury, T. Sundius, and R. Ramasamy, J. Mol. Struct., 702, 9–21 (2004).

    Article  ADS  Google Scholar 

  21. D. Michalska and R. Wysokiñski, Chem. Phys. Lett., 403, 211–217 (2005).

    Article  ADS  Google Scholar 

  22. S. D. Williams, T. J. Johnson, T. P. Gibbons, and C. L. Kitchens, Theor. Chem. Acc., 117, 283–290 (2007).

    Article  Google Scholar 

  23. L. Szabó, V. Chris, A. Pîrnàu, N. Leopold, O. Cozar, and S. Z. Orosz, Vib. Spectrosc., 48, 297–301 (2008).

    Article  Google Scholar 

  24. Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh, PA (2003).

  25. S. K. Freeman, Applications of laser Raman spectroscopy, New York, John Wiley & Sons (1974).

    Google Scholar 

  26. J. S. Hager, J. Zahardis, R. M. Pagni, R. N. Compton, and J. Li, J. Chem. Phys., 120, 2708–2718 (2004).

    Article  ADS  Google Scholar 

  27. C. Djerassi, E. J. Warawa, J. M. Berdahl, and E. J. Eisenbraun, J. Am. Chem. Soc., 83, 3334–3336 (1961).

    Article  Google Scholar 

  28. D. A. Lightner and B. V. Crist, Appl. Spectrosc., 33, 307–310 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 2, p. 325, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Basheer, W. Investigating (R)-3-Methylcyclopentanone Conformers Using Temperature-Dependent Raman Spectroscopy. J Appl Spectrosc 81, 328–335 (2014). https://doi.org/10.1007/s10812-014-9932-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9932-7

Keywords

Navigation