Skip to main content
Log in

An ethanol extract from the phaeophyte Undaria pinnatifida improves learning and memory impairment and dendritic spine morphology in hippocampal neurons

  • 9th Asia Pacific Conference on Algal Biotechnology - Bangkok
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Learning and memory are closely related to synaptic plasticity in neurons, associated with robust spine density and classical morphological patterns. Here, we investigated the effects of Undaria pinnatifida ethanol extract (UPE) on learning and spatial memory in mice. For behavioral studies, the passive avoidance test and radial-arm maze paradigm were used. With oral administration of UPE at an optimal concentration of 2 mg g−1 body weight, the latency time in the passive avoidance test was increased significantly (on average, 143 and 116 s on days 1 and 2, respectively; P < 0.01) versus the scopolamine induced memory impairment group (25 and 23 s on days 1 and 2, respectively). The working errors and latency time in the radial-arm maze decreased to 0.6 errors and 56 s (P < 0.05) compared with scopolamine-administered mice (1.0 error and 113 s) on day 2, respectively. Dendritic spine morphology of hippocampal neurons in the UPE-administered group (2 mg g−1 body weight) was analyzed using Golgi-impregnated tissue sections; the number of dendritic spines increased significantly (1.4-fold, versus control). Numbers of large mushroom and stubby spines also increased (1.8- and 1.7-fold, respectively, versus control). These findings indicate that U. pinnatifida has repairing effects on memory and behavioral disorders, probably through restoring spine density and morphology, and may thus have beneficial effects in the treatment of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Beatty WW, Butters N, Janowsky DS (1986) Patterns of memory failure after scopolamine treatment: implications for cholinergic hypotheses of dementia. Behav Neural Biol 45:196–211

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan MMH, Mohibbullah M, Hannan MA, Hong YK, Choi JS, Choi IS, Moon IS (2015) Undaria pinnatifida promotes spinogenesis and synaptogenesis and potentiates functional presynaptic plasticity in hippocampal neurons. Am J Chin Med 43:529–542

    Article  Google Scholar 

  • Chakravarthi KK, Avadhani R (2014) Enhancement of hippocampal CA3 neuronal dendritic arborization by Glycyrrhiza glabra root extract treatment in Wistar Albino rats. J Nat Sci Biol Med 5:25–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickstein DL, Weaver CM, Luebke JI, Hof PR (2013) Dendritic spine changes associated with normal aging. Neuroscience 251:21–32

    Article  CAS  PubMed  Google Scholar 

  • Donguibogam Committee (1999) Translated Donguibogam. Bubinmunwha Press, Seoul

    Google Scholar 

  • Enomoto T, Ishibashi T, Tokuda K, Ishiyama T, Toma S, Ito A (2008) Lurasidone reverses MK-801-induced impairment of learning and memory in the Morris water maze and radial-arm maze tests in rats. Behav Brain Res 186:197–207

    Article  CAS  PubMed  Google Scholar 

  • Hannan MA, Kang JY, Hong YK, Lee H, Choi JS, Choi IS, Moon IS (2013) The marine alga Gelidium amansii promotes the development and complexity of neuronal cytoarchitecture. Phytother Res 27:21–29

    Article  PubMed  Google Scholar 

  • Hannan MA, Mohibbullah M, Hwang SY, Lee K, Kim YC, Hong YK, Moon IS (2014) Differential neuritogenic activities of two edible brown macroalgae, Undaria pinnatifida and Saccharina japonica. Am J Chin Med 42:1371–1384

    Article  PubMed  Google Scholar 

  • Hodges H (1996) Maze procedures: the radial-arm and water maze compared. Cogn Brain Res 3:167–181

    Article  CAS  Google Scholar 

  • Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T, Miyashita K (2004) Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPAR gamma ligand, troglitazone, on colon cancer cells. Biochim Biophys Acta 1675:113–119

    Article  CAS  PubMed  Google Scholar 

  • Huh K, Song JW, Choi JW (1992) Studies on uterus contraction of the components of Undaria pinnatifida. Kor J Pharmacog 23:146–152

    Google Scholar 

  • Jewart RD, Green J, Lu CJ, Cellar J, Tune LE (2005) Cognitive, behavioral, and physiological changes in Alzheimer disease patients as a function of incontinence medications. Am J Geriat Psychiat 13:324–328

    Article  Google Scholar 

  • Jones RW, Wesnes KA, Kirby J (1991) Effects of NMDA modulation in scopolamine dementia. Ann N Y Acad Sci 640:241–244

    Article  CAS  PubMed  Google Scholar 

  • Koleske AJ (2013) Molecular mechanisms of dendrite stability. Nat Rev Neurosci 14:536–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazcano Z, Solis O, Bringas ME, Limón D, Diaz A, Espinosa B, Guevara J (2014) Unilateral injection of Aβ25–35 in the hippocampus reduces the number of dendritic spines in hyperglycemic rats. Synapse 68:585–594

    Article  CAS  Google Scholar 

  • Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophy Res Commun 332:392–397

    Article  CAS  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohibbullah M, Bhuiyan MMH, Hannan MA, Getachew P, Hong YK, Choi JS, Moon IS (2015) The edible red alga Porphyra yezoensis promotes neuronal survival and cytoarchitecture in primary hippocampal neurons. Cell Mol Neurobiol 36:669–682

    Article  PubMed  Google Scholar 

  • Murata M, Ishihara K, Saito H (1999) Hepatic fatty acid oxidation enzyme activities are stimulated in rats fed the brown seaweed, Undaria pinnatifida (Wakame). J Nutr 129:146–151

    Article  CAS  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285

    Article  CAS  PubMed  Google Scholar 

  • Puri A, Srivastava P, Pandey P, Yadav RS, Bhatt PC (2014) Scopolamine induced behavioral and biochemical modifications and protective effect of Celastrus paniculatous and Angelica glauca in rats. Int J Nutr Pharmacol Neurol Dis 4:158–169

    Article  Google Scholar 

  • Rodriguiz RM, Wetsel WC (2006) Assessments of cognitive deficits in mutant mice. In: Levin ED, Buccafusco JJ (eds) Animal models of cognitive impairment. CRC Press, Boca Raton, pp 223–282

    Chapter  Google Scholar 

  • Sabolek HR, Bunce JG, Chrobak JJ (2005) Intraseptal tacrine-induced disruptions of spatial memory performance. Behav Brain Res 158:1–7

    Article  CAS  PubMed  Google Scholar 

  • Sala C (2002) Molecular regulation of dendritic spine shape and function. Neurosignals 11:213–223

    Article  CAS  PubMed  Google Scholar 

  • Scheuer K, Rostock A, Bartsch R, Müller WE (1999) Piracetam improves cognitive performance by restoring neurochemical deficits of the aged rat brain. Pharmacopsychiatry 32:10–16

    Article  CAS  PubMed  Google Scholar 

  • Smith DL, Pozueta J, Gong B, Arancio O, Shelanski M (2009) Reversal of long-term dendritic spine alterations in Alzheimer disease models. P Natl Acad Sci USA 106:16877–16882

    Article  CAS  Google Scholar 

  • Suetsuna K, Maekawa K, Chen JR (2004) Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J Nutr Biochem 15:267–272

    Article  CAS  PubMed  Google Scholar 

  • Thompson KD, Dragar C (2004) Antiviral activity of Undaria pinnatifida against Herpes simplex virus. Phytother Res 18:551–555

    Article  PubMed  Google Scholar 

  • Tseng CK, Chang CF (1984) Chinese seaweeds in herbal medicine. Hydrobiologia 116/117:152–154

    Article  Google Scholar 

  • Wesnes KA, Simpson PM, White L, Pinker S, Jertz G, Murphy M, Siegfried K (1991) Cholinesterase inhibition in the scopolamine model of dementia. Ann N Y Acad Sci 640:268–271

    Article  CAS  PubMed  Google Scholar 

  • Yoo MY, Kim SK, Yang JY (2004) Characterization of an antioxidant from sporophyll of Undaria pinnatifida. Kor J Microbiol Biotechnol 32:307–311

    Google Scholar 

  • Yuste R (2010) Dendritic spines. MIT Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from Pukyong National University (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ki Hong.

Ethics declarations

Mice were treated in accordance with current laws and guiding principles for the care and use of laboratory animals approved by the Animal Ethics Committee of Pukyong National University (Busan, Korea). The ethics committee approved this study under protocol of AEC-201405.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JY., Mohibbullah, M., Park, IS. et al. An ethanol extract from the phaeophyte Undaria pinnatifida improves learning and memory impairment and dendritic spine morphology in hippocampal neurons. J Appl Phycol 30, 129–136 (2018). https://doi.org/10.1007/s10811-017-1116-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1116-4

Keywords

Navigation