Skip to main content
Log in

Hydrurus foetidus (Chrysophyceae)—an inland macroalga with potential

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Hydrurus foetidus (Villars) Trevisan is a benthic freshwater alga in the class Chrysophyceae. Under seasonal climate regimes, it may be found in rivers during the cold seasons. It is widely distributed in cold-temperate, polar, and periglacial regions. Its heavy extracellular polysaccharide coating and its importance as food for grazers under cold conditions may indicate a potential for applied purposes. The strain G 070301 has been kept in culture since 2007. In this presentation, we have fine-tuned our laboratory culturing, detected the presence and positions of lipids in the cells by fluorescence imaging, and performed a preliminary analysis of the unsaturated fatty acids in Hydrurus grown on minimal medium. Little is known about the physiological adaptability of chrysophytes for applied purposes. Following optimization of media and a simple harvesting technology, the psychro- and rheophilic species H. foetidus may have a future as a source of polyunsaturated fatty acids for inland aquaculture and for polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figs. 1–3
Figs. 4–7

Similar content being viewed by others

References

  • Adams C, Bugbee B (2014) Enhancing lipid production of the marine diatom Chaetoceros gracilis: synergistic interactions of sodium chloride and silicon. J Appl Phycol 26:1351–1357

    Article  CAS  Google Scholar 

  • Arts MT, Ackman RG, Holub BJ (2001) “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J Fish Aquat Sci 58:122–137

    Article  CAS  Google Scholar 

  • Arts MT, Brett MT, Kainz MJ (eds) (2009) Lipids in aquatic ecosystems. Springer, Dordrecht

    Google Scholar 

  • Avel M, Avel M (1932) Sur l’existence dans le Massif Central de la Chrysomonadine Hydrurus foetidus Kirchner. Rev Algol 11:347–349

    Google Scholar 

  • Bachhaus D (1968) Ökologische Untersuchungen an den Aufwuchsalgen der obersten Donau und ihrer Quellflüsse. III. Die Algenverteilung und ihre Beziehungen zur Milieuofferte. Arch Hydrobiol/Suppl XXXIV (Donauforschung III) 3:130–149

    Google Scholar 

  • Baweja P, Sahoo D, García-Jiménes P, Robaina RR (2009) Seaweed tissue culture as applied to biotechnology: problems, achievements and prospects. Phycol Res 57:45–58

    Article  Google Scholar 

  • Beattie A, Hirst EL, Perceival E (1961) Studies on the metabolism of the Chrysophyceae. Biochem J 79:531–537

  • Becker EW (2013) Microalgae for human and animal nutrition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. Wiley Blackwell, Chichester, England, pp 461–503

    Chapter  Google Scholar 

  • Brett MT, Müller-Navarra DC, Ballantyne AP, Ravet JL, Goldman CR (2006) Daphnia fatty acid composition reflects that of their diet. Limnol Oceanogr 51:2428–2437

    Article  CAS  Google Scholar 

  • Bursa A (1934) Hydrurus foetidus Kirch. w Polskich Tatrach. – Hydrurus foetidus Kirch. in der Polnischen Tatra. I. Oekologie, Morphologie. II. Phenologie. Bull Int l’Académie Polonaise des Sciences des Lettres (Classe des Sciences Mathématiques Naturelles. Série B: Sciences Naturelles (I)) 69–84 + 113–31

  • Bux F (ed) (2013) Biotechnological applications of microalgae. CRC Press, Boca Raton

    Google Scholar 

  • Cavalier-Smith T (2010) Kingdoms protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 6:342–345

    Article  PubMed  Google Scholar 

  • Charrier B, Rolland E, Gupta V, Reddy CRK (2015a) Production of genetically and developmentally modified seaweeds: exploiting the potential of artificial selection techniques. Front Plant Sci. doi:10.3389/fpls.2015.00127

    Google Scholar 

  • Charrier B, Coates JC, Robaina RR (eds.) (2015b) From the emergence of multicellularity to complex body architectures: update and perspectives on the biological mechanisms involved in macroalgal development. Frontiers in Plant Science, Spec Iss, http://journal.frontiersin.org/researchtopic/2598/from-the-emergence-of-multicellularity-to-complex-body-architectures-update-and-perspectives-on-the

  • Craigie JS (1974) Storage products. In: Stewart WDP (ed) Algal physiology and biochemistry. Blackwell, Oxford, pp 206–235

    Google Scholar 

  • Fukushima H (1962) Preliminary report on the life history of Hydrurus foetidus. Acta Phytotax Geobot 20:290–295

    Google Scholar 

  • Galloway AWE, Sami J, Taipale SJ, Hiltunen M, Peltomaa E, Strandberg U, Brett MT, Kankaala P (2014) Diet-specific biomarkers show that high-quality phytoplankton fuels herbivorous zooplankton in large boreal lakes. Freshw Biol 59:1902–1915

    Article  Google Scholar 

  • Geitler L (1927) Über Vegetationsfärbungen in Bächen (On staining by vegetation in streams). Biol Generalis Int Zallg Frag Lebensforsch 3:791–814 + Taf. XVIII-XXI

    Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  PubMed  Google Scholar 

  • Griffiths DJ (2013) Microalgae and man. Nova Science Publishers Inc, New York

    Google Scholar 

  • Guillard RRL, Lorenzen CJ (1972) Yellow-green algae with chlorophyllide c. J Phycol 8:10–14

    CAS  Google Scholar 

  • Guiry W (2016) In: Guiry MD, Guiry GM (eds) AlgaeBase. World-wide electronic publication, Natl Univ Ireland, Galway http://www.algaebase.org ; searched on 12 March 2016

    Google Scholar 

  • Hovasse R, Joyon L (1960) Contribution à l'étude de la Chrysomonadine Hydrurus foetidus. Rev Algol, Nouv Sér 5:66–83 + Pl. 6-9

    Google Scholar 

  • Kann E (1978) Systematik und Ökologie der Algen österreichischer Bergbäche. Arch Hydrobiol/Suppl 53(4):405–643

  • Kim KM, Park J-H, Bhattacharya D, Yoon HS (2014) Application of next-generation sequencing to unravelling the evolutionary history of algae. Int J Syst Evol Microbiol 64:333–345

    Article  PubMed  Google Scholar 

  • Klaveness D (1990) Size structure and potential food value of the plankton community to Ostrea edulis L. in a traditional Norwegian “Østerspoll”. Aquaculture 86:231–247

    Article  Google Scholar 

  • Klaveness D (2012) En kuldekjær biofilmregissør Hydrurus foetidus. Biolog (Oslo) 30:20–26

    Google Scholar 

  • Klaveness D, Guillard RRL (1975) The requirement for silicon in Synura petersenii (Chrysophyceae). J Phycol 11:349–355

    CAS  Google Scholar 

  • Klaveness D, Lindstrøm E-A (2011) Hydrurus foetidus (Chromista, Chrysophyceae): a large freshwater chromophyte alga in laboratory culture. Phycol Res 59:105–112

    Article  Google Scholar 

  • Klaveness D, Bråte J, Patil W, Shalchian-Tabrizi K, Kluge R, Gislerød HR, Jakobsen KS (2011) The 18S and 28S rDNA identity and phylogeny of the common lotic chrysophyte Hydrurus foetidus. Eur J Phycol 46:282–291

    Article  Google Scholar 

  • Klebs G (1893) Flagellatenstudien. Teil II Z Wiss Zool Abt A 55:353–445 + Taf. XVII-XVIII

    Google Scholar 

  • Koussoroplis A-M, Nussbaumer J, Arts MT, Guschina IA, Kainz MJ (2014) Famine and feast in a common freshwater calanoid: effect of diet and temperature on fatty acid dynamics of Eudiaptomus gracilis. Limnol Oceanogr 59:947–958

    Article  CAS  Google Scholar 

  • Lehman JT (1976) Ecological and nutritional studies on Dinobryon Ehrenb: seasonal periodicity and the phosphate toxicity problem. Limnol Oceanogr 21:646–658

    Article  CAS  Google Scholar 

  • Lindstrøm E-A, Johansen SW, Saloranta T (2004) Periphyton in running water—long-term studies of natural variation. Hydrobiologia 521:63–86

    Article  Google Scholar 

  • Loureiro R, Gachon CMM, Rebours C (2015) Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol 206:489–492

    Article  PubMed  Google Scholar 

  • Mack B (1953) Untersuchungen an Chrysophyceen IV. Zur Kenntnis von Hydrurus foetidus. Öster Bot Z 100:579–582

    Article  Google Scholar 

  • Milner AM, Brittain JE, Castellas E, Petts GE (2001) Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. Freshw Biol 46:1833–1847

    Article  Google Scholar 

  • Milner AM, Brown LE, Hannah DM (2009) Hydroecological response of river systems to shrinking glaciers. Hydrol Process 23:62–77

    Article  CAS  Google Scholar 

  • Moog O, Janecek BFU (1991) River flow, substrate type and Hydrurus density as major determinants of macroinvertebrate abundance, composition and distribution. Int Ver Theor Angew Limnol, Verh 24:1888–1896

    Google Scholar 

  • Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697

    Article  PubMed  PubMed Central  Google Scholar 

  • Muskiet FAJ, Fokkema MR, Schaafsma A, Boersma ER, Crawford MA (2004) Is docosahexaenoic acid (DHA) essential? Lessons from DHA status regulation, our ancient diet, epidemiology and randomized controlled trials. J Nutr 134:183–186

    CAS  PubMed  Google Scholar 

  • Nunez M, Quigg A (2016) Changes in growth and composition of the marine microalgae Phaeodactylum tricornutum and Nannochloropsis salina in response to changing sodium bicarbonate concentrations. J Appl Phycol 28:2123–2138

    Article  CAS  Google Scholar 

  • Palmer CM (1962) Algae in water supplies. An illustrated manual on the identification, significance, and control of algae in water supplies, Publ Health Serv Publ No 657. U.S. Department of Health, Education, and Welfare, Washington 25, D.C.

    Google Scholar 

  • Patil V, Källqvist T, Olsen E, Vogt G, Gislerød HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult Int 15:1–9

    Article  CAS  Google Scholar 

  • Preisig HR (1995) A modern concept of chrysophyte classification. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae. Ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 46–74

    Chapter  Google Scholar 

  • Quillet M (1955) Sur la nature chimique de la leucosine, polysaccharide de réserve caractéristique des Chrysophycées, extraite d’Hydrurus foetidus. CR Acad Sci III-Vie 240:1001–1003

  • Raven JA (1995) Comparative aspects of chrysophyte nutrition with emphasis on carbon, phosphorus and nitrogen. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae. Ecology, phylogeny and development. Cambridge University Press, Cambridge, pp 95–118

    Chapter  Google Scholar 

  • Remias D, Jost S, Boenigk J, Wastian J, Lütz C (2013) Hydrurus-related golden algae (Chrysophyceae) cause yellow snow in polar summer snowfields. Phycol Res 61:277–285

    Article  CAS  Google Scholar 

  • Richmond A, Hu Q (eds) (2013) Handbook of microalgal culture, 2nd edn. Wiley Blackwell, Chichester, U.K.

    Google Scholar 

  • Rott E, Schneider SC (2014) A comparison of ecological optima of soft-bodied benthic algae in Norwegian and Austrian rivers and consequences for river monitoring in Europe. Sci Tot Env 475:180–186

    Article  CAS  Google Scholar 

  • Rott E, Cantonati M, Füreder L, Pfister P (2006a) Benthic algae in high altitude streams of the alps—a neglected component of the aquatic biota. Hydrobiologia 562:195–216

    Article  Google Scholar 

  • Rott E, Füreder L, Schütz C, Sonntag B, Wille A (2006b) A conceptual model for niche differentiation of biota within an extreme stream microhabitat. Int Ver Theor Angew Limnol, Verh 29:2321–2323

    Google Scholar 

  • Sandgren CD (1988) The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In: Sandgren CD (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, New York, pp 9–104

    Google Scholar 

  • Sandgren CD (1991) Chrysophyte reproduction and resting cysts: a paleolimnologist’s primer. J Paleolimn 5:1–9

    Article  Google Scholar 

  • Schmedtje U, Bauer A (eds) (1998) Trophiekartierung von aufwuchs- und makrophyten-dominierten Fliessgewässern. Informationsber. Heft 4/98. Bayerischen Landesamtes für Wasserwirtschaft, München

    Google Scholar 

  • Schneider S, Lindstrøm E-A (2009) Bioindication in Norwegian rivers using non-diatomous benthic algae: the acidification index periphyton (AIP). Ecol Indic 9:1206–1211

    Article  CAS  Google Scholar 

  • Škaloudová M, Škaloud P (2013) A new species of Chrysosphaerella (Chrysophyceae: Chromulinales), Chrysosphaerella rotundata sp. nov., from Finland. Phytotaxa 130:34–42

    Article  Google Scholar 

  • Sládeček V (1973) System of water quality from the biological point of view. Arch Hydrobiol, Beih 7 :I-IV–1-218 Ergebn Limnol

    Google Scholar 

  • Smith GM (1950) The fresh-water algae of the United States, 2nd edn. McGraw-Hill Book Company, New York

    Google Scholar 

  • Ström KM (1926) Norwegian mountain algae. Skrifter, Det Norske Videnskaps-Akademi i Oslo I. Mat.-Naturv. Klasse No. 6. Det Norske Videnskaps-Akademi, Oslo

  • Taipale S, Strandberg U, Peltomaa E, Galloway AWE, Ojala A, Brett MT (2013) Aquat Microb Ecol 71:165–178

    Article  Google Scholar 

  • Taylor WR (1954) II. Algae: non-planktonic. The cryptogamic flora of the arctic (Spec Iss). Bot Rev 20:363–399

    Article  Google Scholar 

  • von Stosch HA (1951) Über das Leukosin, den Reservestoff der Chrysophyten. Naturwissenschaften 38:192–193

    Article  Google Scholar 

  • Watson SB, Satchwill T (2003) Chrysophyte odour production: resource-mediated changes at the cell and population levels. Phycologia 42:393–405

    Article  Google Scholar 

  • Wehr JD, Sheath RG (2003) Freshwater habitats of algae. In: Wehr JD, Sheath RG (eds) Freshwater algae of North America—ecology and classification. Academic Press, New York, pp 11–57

    Chapter  Google Scholar 

  • Wille N (1885) Bidrag til Algernes Physiologiske Anatomi. Kungl Svenska Vet--Akad Handl 21(12):1–104

    Google Scholar 

  • Zah R, Burgherr P, Bernasconi SM, Uehlinger U (2001) Stable isotope analysis of macroinvertebrates and their food sources in a glacier stream. Freshw Biol 46:871–882

    Article  CAS  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Shih C, Ehrhardt D, Grossman AR, Apt KE (2001) Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science 292:2073–2075

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Thomas E. Gundersen, CEO at Vitas, for the advice concerning the preparation of material for the present and future analyses of algal components. The project has been supported by the Finse Alpine Research Centre (www.finse.uio.no ), and the author is indebted to its personnel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dag Klaveness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klaveness, D. Hydrurus foetidus (Chrysophyceae)—an inland macroalga with potential. J Appl Phycol 29, 1485–1491 (2017). https://doi.org/10.1007/s10811-016-1047-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-1047-5

Keywords

Navigation