Skip to main content
Log in

In vitro toxicity of microalgal and cyanobacterial strains of interest as food source

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The general objective of the present work was to evaluate the toxicity of 11 microalgal strains and one natural bloom, selected as potential food or food ingredients due to their nutritional quality, in two models, human dermal fibroblasts and Artemia salina. Methanolic and aqueous extracts of the biomasses were tested on A. salina for 24 and 48 h at concentrations up to 12.5 g L−1 of extracted biomass. Only aqueous extracts were tested on fibroblasts for 24 h. Chlorella vulgaris Roquette, C. vulgaris Allma, Tetraselmis suecica F&M-M33, and Porphyridium purpureum F&M-M46 showed no toxicity towards A. salina and fibroblasts. Only Klamath powder was toxic to both models with all types of extracts. Tisochrysis lutea (T-ISO) F&M-M36, Chlorella sorokiniana F&M-M49 grown in BG11, and C. sorokinina IAM C-212 showed toxicity, even if to different extents, to fibroblasts and, only with the methanolic extract, to A. salina. The remaining strains showed no toxicity towards A. salina, but were toxic to fibroblasts: Arthrospira platensis F&M-C256 and Nannochloropsis oceanica F&M-M24 exhibited low toxicity, Nostoc sphaeroides F&M-C117 medium toxicity and Phaeodactylum tricornutum F&M-M40 high toxicity. Although in some cases the two models provided contrasting results, this work confirms their validity for preliminary screening of toxicity. The models are able to indicate organisms and substrates of potential toxicity and may well serve as guidelines for in vivo tests on mammals, which are necessary to apply for novel food in the EU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott WS (1987) A method of computing the effectiveness of an insecticide. J Am Mosq Control Assoc 3:302–303

    CAS  PubMed  Google Scholar 

  • AECOSAN (Agencia Española de Consumo, Seguridad Alimentaria y Nutrición) (2014) Authorisation to market Tetraselmis chuii. Ministry of Health, Social Services and Equality

  • AESAN (Agencia Española de Seguridad Alimentaria y Nutrición) (2013) Report of the scientific committee of the Spanish agency for food safety and nutrition on a request for initial assessment for marketing of the marine microalgae Tetraselmis chuii under regulation (EC) No 258/97 on novel foods and novel food ingredients. Report AESAN-2013-001. Revista del Comité Científico de la AESAN 18:11–28

  • Anderson JE, Goetz CM, McLaughlin JL, Suffness M (1991) A blind comparison of simple bench-top bioassays and human tumour cell cytotoxicities as antitumor prescreens. Phytochem Anal 2:107–111

    Article  CAS  Google Scholar 

  • Arad SM, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotech 21:358–364

    Article  CAS  PubMed  Google Scholar 

  • Ballot A, Fastner J, Lentz M, Wiedner C (2010a) First report of anatoxin-a-producing cyanobacterium Aphanizomenon issatschenkoi in northeastern Germany. Toxicon:56:6964–56:6971

  • Ballot A, Fastner J, Wiedner C (2010b) Paralytic shellfish poisoning toxin-producing cyanobacterium Aphanizomenon gracile in Northeast Germany. Appl Environ Microb 76:1173–1180

    Article  CAS  Google Scholar 

  • Batista AP, Gouveia L, Bandarra NM, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2:164–173

    Article  Google Scholar 

  • Bechelli J, Coppage M, Rosell K, Liesveld J (2011) Cytotoxicity of algae extracts on normal and malignant cells. Leukemia Res 2011:1–7

    Google Scholar 

  • Becker EW (2007) Microalgae as a source of protein. Biotechnol Adv 25:207–210

    Article  CAS  PubMed  Google Scholar 

  • Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR (2004) Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Microb 70:3313–3320

    Article  CAS  Google Scholar 

  • Biondi N, Tredici MR, Taton A, Wilmotte A, Hodgson DA, Losi D, Marinelli F (2008) Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities. J Appl Microbiol 105:105–115

    Article  CAS  PubMed  Google Scholar 

  • Bishop WM, Zubeck HM (2012) Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food Sci 2:1–6

    Article  Google Scholar 

  • Carballo JL, Hernández-Inda ZL, Pérez P, García-Grávalos MD (2002) A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmichael WW (1992) Cyanobacteria secondary metabolites—the cyanotoxins. J Appl Bacteriol 72:445–459

    Article  CAS  PubMed  Google Scholar 

  • Chamorro-Cevallos G, Barron BL, Vazquez-Sanchez J (2007) Toxicologic studies and antitoxic properties of Spirulina. In: Gershwin ME, Belay A (eds) Spirulina in human nutrition and health. CRC Press, Boca Raton, pp. 27–45

    Google Scholar 

  • Chini Zittelli G, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley, Oxford, pp. 225–266

    Chapter  Google Scholar 

  • Commonwealth of Australia Gazette (2007) Australia New Zealand Food Standards Code, Amendment No. 95–2007. Commonwealth of Australia Gazette No. FSC 36 Thursday, 11 October 2007, p 3

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biot 74:1163–1174

    Article  Google Scholar 

  • EFSA (European Food Safety Authority) (2014) Scientific opinion on the safety of astaxanthin-rich ingredients (AstaREAL A1010 and AstaREAL L10) as novel food ingredients. EFSA J 12:3757

    Article  Google Scholar 

  • European Union (1997) Regulation (EC) No 258/97 of the European Parliament and of the Council of 27 January 1997 concerning novel foods and novel food ingredients. Official Journal of the European Union, L 43/1 of 14 February 1997, pp 1–6

  • European Union (2005) Summary of notifications received by the Commission until 31 December 2004 pursuant to Article 5 of Regulation (EC) No 258/97 of the European Parliament and of the Council. Official Journal of the European Union, C 208/2, 25.8.2005

  • European Union (2010) Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union, L 276/33 of 20 October 2010, pp 1–47

  • European Union (2015) P8_TA-PROV(2015)0380. European Parliament legislative resolution of 28 October 2015 on the proposal for a regulation of the European Parliament and of the Council on novel foods (COM(2013)0894 – C7–0487/2013–2013/0435(COD)). http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+TA+P8-TA-2015-0380+0+DOC+XML+V0//EN#ref_1_1. Accessed 25 Jan 2016

  • European Union, Novel Food catalogue http://ec.europa.eu/food/safety/novel_food/catalogue/search/public/index.cfm. Accessed 12 Feb 2016

  • Fackenthal JD, Godley LA (2008) Aberrant RNA splicing and its functional consequences in cancer cells. Dis Model Mech 1:37–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FDA (2014) Guidance for industry. Considerations regarding substances added to foods, including beverages and dietary supplements. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Applied Nutrition, January 2014

  • Federal Food, Drug, And Cosmetic Act, as amended through P.L. 113–5, enacted March 13, 2013. Chapter II—definitions, Section 201, (s)

  • Ferreira FMB, Franco Soler JM, Fidalgo ML, Fernández-Vila P (2001) PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma-lever reservoir (Douro river, northern Portugal). Toxicon 39:757–761

    Article  CAS  PubMed  Google Scholar 

  • FSANZ, Proposal P1024 - Revision of the regulation of nutritive substances & novel foods Supporting document 2. Assessment of risks and safety data requirements for new foods. http://www.foodstandards.gov.au/code/proposals/pages/proposalp1024revisio5756.aspx. Accessed 29 June 2016

  • FSANZ (2016) Novel food-record of views. Record of views formed by the FSANZ. Novel Foods Reference Group or the Advisory Committee on Novel Foods, March 2016

  • Gardeva E, Toshkova R, Yossifova L, Minkova K, Gigova L (2012) Cytotoxic and apoptogenic potential of red microalgal polysaccharides. Biotechnol Biotec Eq. 26:3167–3172

    Article  CAS  Google Scholar 

  • Gilroy DJ, Kauffman KW, Hall RA, Huang X, Chu FS (2000) Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements. Environ Health Persp 108:435–439

    Article  CAS  Google Scholar 

  • Giovannelli L, Innocenti M, Santamaria AR, Bigagli E, Pasqua G, Mulinacci N (2014) Antitumoural activity of viniferin-enriched extracts from Vitis vinifera L. cell cultures. Nat Prod Res 28:2006–2016

    Article  CAS  PubMed  Google Scholar 

  • Goh SH, Alitheen NBM, Yusoff FM, Yap SK, Loh SP (2014) Crude ethyl acetate extract of marine microalga, Chaetoceros calcitrans, induces apoptosis in MDA-MB-231 breast cancer cells. Pharmacogn Mag 10:1–8

    PubMed  PubMed Central  Google Scholar 

  • Golakoti T, Ogino J, Heltzel CE, Le Husebo T, Jensen CM, Larsen LK, Patterson GML, Moore RE, Mooberry SL (1995) Structure determination, conformational analysis, chemical stability studies, and antitumor evaluation of the cryptophycins. Isolation of 18 new analogs from Nostoc sp. strain GSV 224. J Am Chem Soc 117:12030–12049

    Article  CAS  Google Scholar 

  • Guilhermino L, Diamantino T, Silva MC, Soares AMVM (2000) Acute toxicity test with Daphnia magna: an alternative to mammals in the prescreening of chemical toxicity? Ecotox Environ Safe 46:357–362

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici MR (2014) Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a green wall panel photobioreactor. Biotechnol Biofuels 7:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063

    Article  PubMed  Google Scholar 

  • Han D, Zhongyang D, Lu F, Zhengyu H (2013) Biology and biotechnology of edible Nostoc. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley, Oxford, pp. 433–444

    Chapter  Google Scholar 

  • Heussner AH, Mazija L, Fastner J, Dietrich DR (2012) Toxin content and cytotoxicity of algal dietary supplements. Toxicol Appl Pharm 265:263–271

    Article  CAS  Google Scholar 

  • Hisem D, Hrouzek P, Tomek P, Tomsícková J, Zapomelová E, Skácelová K, Lukesová A, Kopecký J (2011) Cyanobacterial cytotoxicity versus toxicity to brine shrimp Artemia salina. Toxicon 57:76–83

    Article  CAS  PubMed  Google Scholar 

  • Hrouzek P, Tomek P, Lukesová A, Urban J, Voloshko L, Pushparaj B, Lukavský J, Stys D, Kopecký J (2011) Cytotoxicity and secondary metabolites production in terrestrial Nostoc strains originating from different climatic/geographic regions and habitats: is their cytotoxicity environmentally dependent? Environ Toxicol 26:345–358

    Article  CAS  PubMed  Google Scholar 

  • Hrouzek P, Kapuścik A, Vacek J, Voráčová K, Paichlová J, Kosina P, Voloshko L, Ventura S, Kopecký J (2016) Cytotoxicity evaluation of large cyanobacterial strain set using selected human and murine in vitro cell models. Ecotox Environ Safe 124:177–185

    Article  CAS  Google Scholar 

  • Ibañez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agr 93:703–709

    Article  Google Scholar 

  • Jaki B, Orjala J, Bürgi HR, Sticher O (1999) Biological screening of cyanobacteria for antimicrobial and molluscicidal activity, brine shrimp lethality, and cytotoxicity. Pharm Biol 37:138–143

    Article  Google Scholar 

  • Jallepalli PV, Lengauer C (2001) Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 1:109–117

    Article  CAS  PubMed  Google Scholar 

  • Lagarto Parra A, Yhebra RS, Sardiñas IG, Buela LI (2001) Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 8:395–400

    Article  Google Scholar 

  • Landsberg JH (2002) The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci 10:113–390

    Article  Google Scholar 

  • Lincoln RA, Strupinski K, Walker JM (1996) The use of Artemia nauplii (brine shrimp larvae) to detect toxic compounds from microalgal cultures. Int J Pharmacogn 34:384–389

    Article  Google Scholar 

  • Lopes VR, Schmidtke M, Fernandes MH, Martins R, Vasconcelos V (2011) Cytotoxicity in L929 fibroblasts and inhibition of herpes simplex virus type 1 Kupka by estuarine cyanobacteria extracts. Toxicol in Vitro 25:944–950

    Article  CAS  PubMed  Google Scholar 

  • Matsushima R, Yoshizawa S, Watanabe MF, Harada KI, Furusawa M, Carmichael WW, Fujiki H (1990) In vitro and in vivo effects of protein phosphatase inhibitors, microcystins and nodularin, on mouse skin and fibroblasts. Biochem Bioph Res Co 171:867–874

    Article  CAS  Google Scholar 

  • Muller-Feuga A (2013) Microalgae for aquaculture: the current global situation and future trends. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: Applied phycology and biotechnology, 2nd edn. Wiley, Oxford, pp. 615–627

    Google Scholar 

  • Panda D, Himes RH, Moore RE, Wilson L, Jordan MA (1997) Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1. Biochemistry 36:12948–12953

    Article  CAS  PubMed  Google Scholar 

  • Papendorf O, Konig GM, Wright AD, Choris I, Oberemm A (1997) Mueggelone, a novel inhibitor of fish development from the fresh water cyanobacterium Aphanizomenon flos-aquae. J Nat Prod 60:1298–1300

    Article  CAS  PubMed  Google Scholar 

  • Piccardi R, Frosini A, Tredici MR, Margheri MC (2000) Bioactivity in free-living and symbiotic cyanobacteria of the genus Nostoc. J Appl Phycol 12:543–547

    Article  Google Scholar 

  • Piccardi R, Margheri MC, Biondi N, Carotti S, Landini I, Mini E, Tredici MR (2001) Valutazione dell’attività citotossica di estratti e polisaccaridi cianobatterici in modelli cellulari in vitro. 21° Congresso Nazionale della Società Italiana di Chemioterapia, Florence, 2–5 December 2001

  • Prestegard SK, Oftedal L, Coyne RT, Nygaard G, Skjærven KH, Knutsen G, Døskeland SV, Herfindal L (2009) Marine benthic diatoms contain compounds able to induce leukemia cell death and modulate blood platelet activity. Mar Drugs 7:605–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasulochana P, Preethy V (2015) Glimpses on cosmetic applications using marine red algae. Int J Pharm Tech 7:9235–9242

    CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Sleet RB, Brendel K (1985) Homogeneous populations of Artemia nauplii and their potential use for in vitro testing in developmental toxicology. Teratogen Carcin Mut 5:41–54

    Article  CAS  Google Scholar 

  • Solis PN, Wright CW, Anderson MM, Gupta MP, Phillipson JD (1993) A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med 59:250–252

    Article  CAS  PubMed  Google Scholar 

  • Tredici MR, Biondi N, Ponis E, Rodolfi L, Chini Zittelli G (2009) Advances in microalgal culture for aquaculture feed and other uses. In: Burnell G, Allan G (eds) New technologies in aquaculture: improving production efficiency, quality and environmental management. Woodhead Publishing, Cambridge, pp. 610–676

    Chapter  Google Scholar 

  • Tredici MR, Rodolfi L, Sampietro G, Bassi N (2011) Low-cost photobioreactor for microalgae cultivation. Patent WO 2011/013104 A1

  • Vezie C, Benoufella F, Sivonen K, Bertru G, Laplanche A (1996) Detection of toxicity of cyanobacterial strains using Artemia salina and MicrotoxR assays compared with mouse bioassay results. Phycologia 35:198–202

    Article  Google Scholar 

  • Zarrouk C (1966) Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner) Geitler. Ph.D. thesis, Université de Paris, Paris

Download references

Acknowledgments

The authors wish to thank the spin-off company of the University of Florence Fotosintetica & Microbiologica S.r.l. for the use of its production facilities in Sesto Fiorentino (Florence, Italy) and support in the cultivation of seven of the microalgae tested, Dr. Graziella Chini Zittelli from the Institute of Ecosystem Study of the CNR in Sesto Fiorentino (Italy) for helping in cultivating two of the microalgae tested, Archimede Ricerche S.r.l. (Italy), Roquette Frerès (France) and Allma Microalgae (Portugal) for providing some of the biomasses used in this work, and Mrs. P.A. Bryant for linguistic revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natascia Biondi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niccolai, A., Bigagli, E., Biondi, N. et al. In vitro toxicity of microalgal and cyanobacterial strains of interest as food source. J Appl Phycol 29, 199–209 (2017). https://doi.org/10.1007/s10811-016-0924-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0924-2

Keywords

Navigation