Skip to main content
Log in

Growth and biochemical responses of Skeletonema costatum to petroleum contamination

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Clonal populations of the diatom Skeletonema costatum isolated from Lake Pontchartrain (Louisiana, USA) near the 2010 Deepwater Horizon oil release were exposed to uncontaminated f/2 medium or light slop oil emulsified (O-E; 25, 50, 75, 100 % of initial levels) in f/2 during short- (10 day) and long-term (21 day) incubations. During 10-day incubations, inhibition of logarithmic growth slopes occurred in the most severely contaminated populations (75, 100 % O-E f/2). Growth in oil-contaminated populations was reduced during 21-day incubations, and growth rates for all populations converged by ca. day 12. Additionally, total cell lipid contents for populations exposed to uncontaminated and contaminated media differed, and mean values for control populations were ca. 2-fold greater than populations maintained in 100 % O-E f/2 medium. Saturated and unsaturated cellular lipids in uncontaminated populations were greater than in petroleum-contaminated populations. Relative cellular fatty acids abundances and RuBisCO RNA transcript copy numbers, proxies for food storage and cellular stress, and mRNA transcript regulation influencing photosynthesis, respectively, were altered half-way through the long-term incubation; C16:0 and C16:1 fatty acids were greater and less, respectively, and RuBisCO transcript copy numbers were greater within severely contaminated populations (compared to uncontaminated populations). Yet, fatty acid abundances and RuBisCO copy numbers were equivalent among culture populations by the end of the incubation. Oil contaminants within the culture medium were measured; C6–C12 hydrocarbons and arsenic coincided with (initial) growth inhibition and (later) altered cell physiologies, respectively. Relationships among assessed parameters were deemed useful determinants for evaluating phytoplankton inhibition in response to petroleum contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Argyrou ME, Bianchi TS, Lambert CD (1997) Transport and fate of dissolved organic matter in the Lake Pontchartrain estuary, Louisiana, U.S.A. Biogeochemistry 38:207–226

    Article  CAS  Google Scholar 

  • Ashworth J, Coesel S, Lee A, Armbrust EV, Orellana MV, Baliga NS (2013) Genome-wide diel growth transitions in the diatom Thalassiosira pseudonana. Proc Natl Acad Sci USA 110:7518–7523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil based biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi R, Arndt C, Sommer U (2014) Linking elements to biochemicals: effects of nutrient supply ratios and growth rates on fatty acid composition of phytoplankton species. J Phycol 50:117–130

    Article  CAS  PubMed  Google Scholar 

  • Bigelow NW, Hardin WR, Barker JP, Ryken SA, MacRae AC, Cattolico RA (2011) A comprehensive GC-MS sub-microscale assay for fatty acids and its applications. J Am Oil Chem Soc 88:1329–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casper ET, Paul JH, Smith MC, Gray M (2004) Detection and quantification of the red tide dinoflagellate Karenia brevis by real-time nucleic acid sequenced-based amplification. Appl Env Microbiol 70:4727–4732

    Article  CAS  Google Scholar 

  • Clarke KR, Warwick R (2001) Change in marine communities: an approach to statistical analyses and interpretation, 2nd edn. Primer-E Ltd., Plymouth, UK

    Google Scholar 

  • D’Souza NA, Subramaniam A, Juhl AR, Hafez M, Chekalyuk A, Phan S, Yan B, MacDonald IR, Weber SC, Montoya JP (2016) Elevated surface chlorophyll associated with natural oil seeps in the Gulf of Mexico. Nat Geosci 9:215–218

    Article  Google Scholar 

  • Dardeau MR, Modlin RF, Schroeder WW, Stout JP (1992) Estuaries. In: Hackney CT, Adams SM, Martin WH (eds) Biodiversity of the southeastern United States aquatic communities. Wiley, New York, pp 615–744

    Google Scholar 

  • Dunstan WM, Atkinson LP, Natoli J (1975) Stimulation and inhibition of phytoplankton growth by low molecular weight hydrocarbons. Mar Biol 31:305–310

    Article  CAS  Google Scholar 

  • Fábregas J, Morales ED, Lamela T, Cabezas B, Otero A (1997) Short communication: mixotrophic productivity of the marine diatom Phaeodactylum tricornutum with soluble fractions of rye, wheat and potato. World J Microb Biot 13:349–351

    Article  Google Scholar 

  • Ghasemi Y, Rasoul-Amini S, Fotooh-Abadi E (2011) The biotransformation, biodegradation and bioremediation of organic compounds by microalgae. J Phycol 47:969–980

    Article  CAS  PubMed  Google Scholar 

  • Gilde K, Pinckney JL (2012) Sublethal effects of crude oil on the community structure of estuarine phytoplankton. Estuaries Coast 35:853–861

    Article  CAS  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, NY, pp 26–60

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Guschina IA, Harwood J (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Gutnick DL, Rosenberg E (1977) Oil tankers and pollution: a microbiological approach. Annu Rev Biol 31:379–396

    CAS  Google Scholar 

  • Härnström K, Ellegaard M, Andersen TJ, Godhey A (2011) Hundred years of genetic structure in sediment revived diatom population. Proc Natl Acad Sci USA 108:4252–4257

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison PJ, Berges JA (2005) Marine culture media. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, NY, pp 21–33

    Google Scholar 

  • Head IM, Jones DM, Röling WFM (2006) Marine microorganisms make a meal of oil. Nat Rev Microbiol 4:173–182

    Article  CAS  PubMed  Google Scholar 

  • Hynes HBN (1975) Edgardo Baldi Memorial Lecture—the stream and its valley. Verh Internat Verein Limnol 19:1–5

    Google Scholar 

  • John DE, Patterson SS, Paul JH (2007) Phytoplankton-group specific quantitative polymerase chain reaction assays for RuBisCO mRNA transcripts in seawater. Mar Biotech 9:747–759

    Article  CAS  Google Scholar 

  • Karydis M (1979) Short term effects of hydrocarbons on the photosynthesis and respiration of some phytoplankton species. Bot Mar 22:281–285

    Article  CAS  Google Scholar 

  • Karydis M (1981) The toxicity of crude oil for the marine alga Skeletonema costatum (Greville) Cleve in relation to nutrient limitation. Hydrobiologia 85:137–143

    Article  Google Scholar 

  • Kong W, Ream DC, Priscu JC, Morgan-Kiss M (2012) Diversity and expression of RubisCO genes in a perennially ice-covered Antarctic lake during polar night transition. Appl Environ Microbiol 78:4358–4366

  • Kooistra WHC, Sarno D, Balzono S, Gu H, Andersen RA, Zingone A (2008) Global diversity and biogeography of Skeleonema species (Bacillariophyta). Protist 159:177–193

    Article  CAS  PubMed  Google Scholar 

  • Kusk KO (1981) Effects of hydrocarbons on respiration, photosynthesis and growth of the diatom Phaeodactylum tricornutum. Bot Mar 24:413–418

    CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levitan O, Dinamarca EZ, Ehud Z, Lun DS, Guerra LT, Kim MK, Joomi K, Van Mooy BAS, Bhattacharya D, Falkowski PG (2015) Modeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc Natl Acad Sci USA 112:412–417

    Article  CAS  PubMed  Google Scholar 

  • Likens GE (1984) Beyond the shoreline: a watershed-ecosystem approach. Verh Int Verein Limnol 22:1–22

  • López-Elías JA, Ruiz C, Gisela M, Raygoza E, Areli L, Córdova M, Rafael L, Martínez C, Rafael L, Martínez-Porchas M, Anselmo MB, Ramírez Suárez JC (2014) Evaluation of culture media limited in nitrogen and silicates on the production response and lipid content of the diatom Chaetoceros muelleri. Curr Res J Biol Sci 6:145–149

    Google Scholar 

  • Loureiro S, Jauzein C, Garcés E, Collosm Y, Camp J, Vaqué D (2009) The significance of organic nutrients in the nutrition of Pseudo-nitzschia delicatissima (Bacillariophyceae). J Plankton Res 31:399–410

    Article  CAS  Google Scholar 

  • Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) Effect of nutrient availability on the biochemical and elemental stoichoiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae). J Phycol 36:510–522

    Article  CAS  Google Scholar 

  • MacIntyre HL, Cullen JJ (2005) Using cultures to investigate the physiological ecology of microalgae. In: Andersen RA (ed) Algal Culturing Techniques. Elsevier Academic Press, NY, pp 287–326

    Google Scholar 

  • Millie DF (1986) Nutrient-limitation effects on the biochemical composition of Cyclotella meneghiniana (Bacillariophyta): an experimental and statistical analysis. Can J Bot 64:19–26

    Article  CAS  Google Scholar 

  • Millie DF, Hersh CM (1987) Statistical characterizations of the atrazine-induced, photosynthetic inhibition of Cyclotella meneghiniana (Bacillariophyta). Aquat Toxicol 10:239–249

    Article  CAS  Google Scholar 

  • Mishamandani S, Gutierrez T, Berry D, Aitken MD (2015) Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference to biodegradation of aromatic hydrocarbons. Env Microbiol doi: 10.1111/1462-2920.12988

  • Mitra A, Flynn KJ, Burkholder JM, Berge T, Calbet A, Raven JA, Granéli E, Gilbert PM, Hansen PJ, Stoecker DK, Thingstad F, Tillmann U, Våge S, Wilken S, Zubkov MV (2014) The role of mixotrophic protists in the biological carbon pump. Biogeosciences 11:995–1005

    Article  Google Scholar 

  • Morales-Loo MR, Goutx M (1990) Effects of water-soluble fraction of the Mexican crude oil “Isthmus Cactus” on the growth, cellular content of chlorophyll a, and lipid composition of planktonic microalgae. Mar Biol 104:503–509

    Article  CAS  Google Scholar 

  • Murphy LS, Belastock RA (1980) The effect of environmental origin on the response of marine diatoms to chemical stress. Limnol Oceanogr 25:160–165

    Article  Google Scholar 

  • Mus D, Toussaint J-P, Cooksey KE, Fields MW, Gerlach R, Peyton BM, Carlson RP (2013) Physiological and molecular analysis of carbon source supplementation and pH stress-induced accumulation in the marine diatom Phaeodactylum tricornutum. Appl Microbiol Biotechnol 97:3625–3642

    Article  CAS  PubMed  Google Scholar 

  • Nalewajko C, Olaveson MM (1997) Ecophysiological considerations in microalgal toxicity tests. In: Wells PG, Lee K, Blaise C (eds) Microscale testing in aquatic toxicology: advances, techniques, and practice. CRC Press, Boca Raton, pp 289–310

    Google Scholar 

  • Østgaard K, Eide I, Jensen A (1984) Exposure of phytoplankton to Ekofisk crude oil. Mar Environ Res 11:183–200

    Article  Google Scholar 

  • Özhan K, Bargu S (2014) Distinct responses of Gulf of Mexico phytoplankton communities to crude oil and the dispersant Corexit® Ec9500A under different nutrient regimes. Ecotoxiology 23:370–384

    Article  Google Scholar 

  • Özhan K, Miles SM, Bargu S (2014a) Relative phytoplankton growth responses to physically and chemically dispersed South Louisiana sweet crude oil. Environ Monit Assess 186:3941–3956

    Article  PubMed  Google Scholar 

  • Özhan K, Parsons ML, Bargu S (2014b) How were phytoplankton affected by the Deepwater Horizon Oil Spill? Bioscience 64:829–836

    Article  Google Scholar 

  • Özhan K, Zahraeifard S, Smith AP, Bargu S (2015) Induction of reactive oxygen species in marine phytoplankton under crude oil exposure. Environ Sci Pollut Res 22:18874–18884

    Article  Google Scholar 

  • Paixão JF, Nascimento IA, Pereira SA, Leite MBL, Carvalho GC, Silveira JSC Jr, Rebouças M, Matias GRA, Rodrigues ILP (2007) Estimating the gasoline components and formulations toxicity to microalgae (Tetraselmis chuii) and oyster (Crasssostrea rhizophorae) embryos: an approach to minimize environmental pollution risk. Environ Res 103:365–374

    Article  PubMed  Google Scholar 

  • Parsons ML, Morrison W, Rabalais NN, Turner RE, Tyre KN (2015) Phytoplankton and the Macondo oil spill: a comparison of the 2010 phytoplankton assemblage to the baseline conditions on the Louisiana shelf. Environ Pollut 207:152–160

    Article  CAS  PubMed  Google Scholar 

  • Petersen K, Heiaas HH, Tollefsen KE (2014) Combined effects of pharmaceuticals, personal care products, biocides and organic contaminants on the growth of Skeletonema pseudocostatum. Aquat Toxicol 150:45–54

    Article  CAS  PubMed  Google Scholar 

  • Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086

    Article  CAS  PubMed  Google Scholar 

  • Pinckney JL, Wee JL, Hou A, Walker ND (2009) Phytoplankton community structure responses to urban effluent inputs following hurricanes Katrina and Rita. Mar Ecol Prog Ser 387:137–146

    Article  CAS  Google Scholar 

  • Planckaert M (2005) Oil reservoirs and oil production. In: Olliver B, Magot M (eds) Petroleum microbiology. American Society for Microbiology Press, Washington D.C, pp 3–19

    Chapter  Google Scholar 

  • Prince RC (2005) The microbiology of marine oil spill remediation. In: Ollivier B, Magot M (eds) Petroleum microbiology. American Society for Microbiology Press, Washington DC, pp 317–335

    Chapter  Google Scholar 

  • Riedel GG, Sanders JG, Breitburg DL (2003) Seasonal variability in response to estuarine phytoplankton communities to stress: linkages between toxic trace elements and nutrient enrichment. Estuaries 26:323–338

    Article  CAS  Google Scholar 

  • Sanders JG (1979) Effects of arsenic speciation and phosphate concentration on arsenic inhibition of Skeletonema costatum. J Phycol 15:424–428

    CAS  Google Scholar 

  • Sanders JG, Windom HL (1980) The uptake and reduction of arsenic species by marine algae. Estuar Coast Mar Sci 10:555–567

    Article  CAS  Google Scholar 

  • Shi X, Gao W, Shih-hui C, Zhang W, Meldrum DR (2013) Monitoring the single-cell stress response of the diatom Thalassiosira pseudonana by quantitative real-time reverse transcription-PCR. Appl Env Microbiol 79:1850–1858

    Article  CAS  Google Scholar 

  • Shishlyannikov SM, Klimenkov IV, Bedoshvili YD, Mikhailov IS, Gorshkov AG (2014) Effect of mixotrophic growth on the ultrastructure and fatty acid composition of the diatom Synedra acus from Lake Baikal. J Biol Res-Thessaloniki 21:15. doi:10.1186/2241-5793-21-15

    Article  Google Scholar 

  • Sikora WB, Kjerfve B (1985) Factors influencing the salinity regime of Lake Pontchartrain, a shallow coastal lagoon: analysis of a long-term data set. Estuaries 8:170–180

    Article  Google Scholar 

  • Siron R, Gérard G, Berland B (1989) Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar Ecol Prog Ser 55:95–100

    Article  CAS  Google Scholar 

  • Smayda TJ (2011) Cryptic planktonic diatom challenges phytoplankton ecologists. Proc Natl Acad Sci USA 108:4269–4270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokin C (1973) Dry weight, packed cell volume, and optical density. Division rates. In: Stein JR (ed) Phycological methods. Cambridge University Press, Cambridge, pp 321–343

    Google Scholar 

  • Stonik V, Stonik I (2015) Low-molecular weight metabolites from diatoms: structures, biological roles and biosynthesis. Mar Drugs 13:3672–3709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strandberg U, Taipale SJ, Hiltunen M, Galloway AWE, Brett MT, Kankaala P (2015) Inferring phytoplankton community composition with a fatty acid mixing model. Ecosphere 6:16

    Article  Google Scholar 

  • Thajuddin N, Ilavarasi A, Baldev E, MubarakAli D, Alharbi NS, Chinnathambi A, Alharbi SA (2015) Stress induced lipids accumulation in naviculoid marine diatoms for bioenergy application. Int J Biotech Wellness Indust 4:18–24

    Article  Google Scholar 

  • Tuchman NC (1996) The role of heterotrophy in algae. In: Stevenson RJ, Bothwell M, Lowe RL (eds) Algal ecology: freshwater benthic ecosystems. Academic Press, Waltham MA, pp 299–319

    Chapter  Google Scholar 

  • Ulrich RM, Casper ET, Campbell L, Richardson B, Heil CA, Paul JH (2010) Detection and quantification of Karenia mikimotoi using real-time nucleic acid sequence-based amplification with internal control RNA (IC-NASBA). Harmful Algae 9:116–119

    Article  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidoudez C, Pohnert G (2012) Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases. Metabolomics 8:654–669

    Article  CAS  Google Scholar 

  • Wacker A, Piepho M, Spijkerman E (2015) Photosynthetic and fatty acid accumulation of four phytoplankton species in response to light intensity and phosphorus availability. Eur J Phycol 50:288–300

    Article  CAS  Google Scholar 

  • Watanabe MM (2005) Freshwater culture media. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, NY, pp 13–20

    Google Scholar 

  • Wee JL, Millie DF, Walton SP (1991) A statistical characterization of growth among clones of Synura petersenii (Synurophyceae). J Phycol 27:570–575

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology, lakes and river ecosystems, 3rd edn. Academic Press, London

    Google Scholar 

  • Wetzel RG, Liken GE (2000) Limnological analyses, 3rd edn. Springer-Verlag, New York

    Book  Google Scholar 

  • Wood AM, Everroad RC, Wingard LM (2005) Measuring growth rates in microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, NY, pp 269–285

    Google Scholar 

  • Ying L, Kangsen M (2005) Effect of growth phase on the fatty acid compositions of four species of marine diatoms. J Ocean Univ China 4:157–162

    Article  Google Scholar 

  • Zhukova NV, Aizdaicher NA (2001) Lipid and fatty acid composition during vegetative and resting stages of the marine diatom Chaetoceros salsugineus. Bot Mar 44:287–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Mullahy Fund for Undergraduate Research at Loyola University New Orleans, Department of Biological Sciences, and J.L. Wee’s Provost Distinguished Professorship III Fund. We wish to thank William E. Paul at Motiva Enterprises LLC in Convent LA for providing the light slop oil samples and associated information. We also would like thank Maria Calzada and Precious Esie for their assistance with some of the data analyses early in the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James L. Wee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wee, J.L., Millie, D.F., Nguyen, N.K. et al. Growth and biochemical responses of Skeletonema costatum to petroleum contamination. J Appl Phycol 28, 3317–3329 (2016). https://doi.org/10.1007/s10811-016-0902-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0902-8

Keywords

Navigation