Skip to main content

Advertisement

Log in

Glyphosate herbicide toxicity to native Hawaiian macroalgal and seagrass species

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Glyphosate-based herbicides are commonly used to combat weeds and unwanted grasses in many habitats in the Hawaiian Islands, including near freshwater, marine, and anchialine pond shorelines. Glyphosate is reported to degrade within a few days of application and to break down rapidly in soil, which suggests that it is safe for use near aquatic environments. However, glyphosate can be transported to coastal waters, especially during run-off events. Five native macroalgael and seagrass species and one introduced aquatic vascular plant found in coastal anchialine ponds or in the adjacent intertidal zone were exposed to freshly mixed solutions of a glyphosate-based herbicide in lab experiments. Chlorophyll absorbance and photosystem II (PSII) efficiency were measured after 5 to 7 days of incubation. At herbicide concentrations (0.225 to 1.8 g L−1 glyphosate) below the manufacturer’s lowest recommended concentration (3.6 g L−1 glyphosate), chlorophyll absorbance and PSII efficiency differed significantly from the control (0.0 g L−1 glyphosate). Native macroalgae and seagrasses in marine and anchialine aquatic habitats may be negatively affected by use of glyphosate herbicides to control shoreline weeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott IA (1999) Marine red algae of the Hawaiian Islands. Bishop Museum, Honolulu, Hawaii, USA

    Google Scholar 

  • Abbott IA, Huisman JM (2004) Marine green and brown algae of the Hawaiian Islands. Bishop Museum, Honolulu, Hawaii, USA

    Google Scholar 

  • Andréa MM, Peres TB, Luchini LC, Bazarin S, Papini S, Matallo MB, Savoy VLT (2003) Influence of repeated applications of glyphosate on its persistence and soil bioactivity. Pesq Agrop Brasileira 38:1329

    Article  Google Scholar 

  • Arthur KE, Balazs GH (2008) A comparison of immature green turtle (Chelonia mydas) diets among seven sites in the Main Hawaiian Islands. Pac Sci 62:205–217

    Article  Google Scholar 

  • Balazs GH (1980) Synopsis of biological data on the green turtle in the Hawaiian Islands. National Marine Fisheries Services, Honolulu, Hawaii. U.S, NOAA-TM-NMFS-SWFC-7 pp. 1–141

    Google Scholar 

  • Balthazor TM, Hallas LE (1986) Glyphosate-degrading microorganisms from industrial activated sludge. Appl Environ Microbiol 51:432–434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgeot T, Gagnaire B, Renault T, Haure J, Moraga D, David E, Boutet I, Sauriau PG, Malet N, Bouchet V, Le Roux A, Lapègue S, Bouilly K, Le Moullac G, Arzul G, Knoery J, Quiniou F, Bacher C, Soletchnik P (2008) Oyster summer mortality risks associated with environmental stress. In: Samain JF, McCombie H (eds) Summer mortality of Pacific oyster Crassostrea gigas. The Morest Project. Editions Quæ, Versailles, France, pp 107–151

  • Castro AJV, Colares IG, Franco TCR, Cultrim MVJ, Luvizotto-Santos R (2015) Using a toxicity test with Ruppia maritima (Linnaeus) to assess the effects of Roundup. Mar Pollut Bull 91:506–510

    Article  CAS  Google Scholar 

  • CCM International Ltd. (2012) Outlook for China glyphosate industry 2012–2016. 300 pp

  • Cedergreen N, Streibig JC (2005) The toxicology of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard. Pest Manag Sci 62:1152–1160

    Article  Google Scholar 

  • Clements C, Ralph S, Petras M (1997) Genotoxicity of select herbicides in Rana catesbeiana using the alkaline single-cell gel DNA electrophoresis (comet) assay. Environ Mol Mutagen 29:277–288

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove J, Borowitzka MA (2010) Chlorophyll fluorescence terminology: an introduction. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: Methods and applications. Springer, Dordrecht, pp 1–18

    Chapter  Google Scholar 

  • Enriquez S, Borowitzka MA (2010) The use of the fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prášil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: Methods and applications. Springer, Dordrecht, pp 187–208

    Chapter  Google Scholar 

  • Folmar LC, Sanders HO, Julin AM (1979) Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Arch Environ Contam Toxicol 8:269–278

    Article  CAS  PubMed  Google Scholar 

  • Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide. American Chemical Society, Washington, D.C., pp 65–97

    Google Scholar 

  • Giambelluca TW, Chen Q, Frazier AG, Price JP, Chen Y-L, Chu P-S, Eischeid JK, Delparte DM (2013) Online rainfall atlas of Hawai‘i. Bull Am Meteorol Soc 94:313–316

    Article  Google Scholar 

  • Global Industry Analyst (2011) Global glyphosate market to reach 1.35 million metric tons by 2017, according to a new report by Global Industry Analysts, Inc. Press Release 10 October 2011

  • Guilherme S, Santos MA, Barroso C, Gaivāo I, Pacheco M (2012) Differential genotoxicity of RoundUp formulation and its constituents in blood cells of fish (Anguilla anguilla): considerations on chemical interactions and DNA damaging mechanisms. Ecotoxicology 21:1381–1390

    Article  CAS  PubMed  Google Scholar 

  • Hernando F, Royuela M, Muñoz-Rueda A, Gonzalez-Murua C (1989) Effect of glyphosate on the greening process and photosynthetic metabolism in Chlorella pyrenoidosa. J Plant Physiol 134:26–31

    Article  CAS  Google Scholar 

  • Hoover JP (2012) Hawaii's sea creatures, a guide to Hawaii's marine invertebrates, 2nd edn. Mutual Publishing, Honolulu, Hawaii

    Google Scholar 

  • Hoover JP (2014) The ultimate guide to Hawaiian reef fishes, sea turtles, dolphins, whales, and seals, 6th edn. Mutual Publishing, Honolulu, Hawaii

    Google Scholar 

  • Huisman JM, Abbott IA, Smith CM (2007) Hawaiian reef plants. University of Hawaii Sea Grant College Program, Honolulu, Hawaii, UNIHI-SEAGRANT-BA-03-02

    Google Scholar 

  • Imada CT (ed.) (2012) Hawaiian native and naturalized vascular plants checklist (December 2012 update). Bishop Museum Tech Report 60, pp. 1–380

  • Kearns CM (2008) Recreational use and impact assessment for Richardson’s Ocean Park, Hilo, Hawaii. MScThesis, University of Hawaii at Hilo, USA 54 pp

  • Kyriakopoulou K, Anastasiadou P, Machera K (2009) Comparative toxicities of fungicide and herbicide formulations on freshwater and marine species. Bull Environ Contam Toxicol 82:290–295

    Article  CAS  PubMed  Google Scholar 

  • Lewis MA (1995) Use of freshwater plants for phytotoxicity testing: a review. Environ Pollut 87:319–336

    Article  CAS  PubMed  Google Scholar 

  • Lipok J, Studnik H, Gruyaert S (2010) The toxicity of RoundUp 360 SL formulation and its main constituents: glyphosate and isopropylamine towards non-target water photoautotrophs. Ecotoxicol Environ Saf 73:181–1688

    Article  Google Scholar 

  • López-Rodas V, Flores-Mova A, Maneiro E, Perdigones N, Marva F, García ME, Costas E (2007) Resistance to glyphosate in the cyanobacterium, Microcystis aeruginosa as result of pre-selective mutations. Evol Ecol 21:535–547

    Article  Google Scholar 

  • Ma J (2002) Differential sensitivity to 30 herbicides among populations of two green algae Scenedesmus obliquus and Chlorella pyrenoidosa. Bull Environ Contam Toxicol 68:275–281

    CAS  PubMed  Google Scholar 

  • Magnusson M, Heimann K, Negri A (2008) Comparative effects of herbicides on photosynthesis and growth of tropical estuarine microalgae. Mar Pollut Bull 56:1545–1552

    Article  CAS  PubMed  Google Scholar 

  • Mamy L, Gabrielle B, Barriuso E (2010) Comparative environmental impacts of glyphosate and conventional herbicides when used with glyphosate-tolerant and non-tolerant crops. Environ Pollut 158:3172–3178

    Article  CAS  PubMed  Google Scholar 

  • Mercurio P, Flores F, Mueller JF, Carter S, Negri AP (2014) Glyphosate persistence in seawater. Mar Pollut Bull 85:385–390

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DG, Chapman PM, Longs TJ (1987) Acute toxicity of RoundUp® and Rodeo® herbicides to rainbow trout, chinook and coho salmon. Bull Environ Contam Toxicol 39:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Mottier A, Séguin A, Devos A, Le Pablic C, Voiseux C, Lebel JM, Serpentini A, Fievet B, Costil K (2015) Effects of subchronic exposure to glyphosate in juvenile oysters (Crassostrea gigas): from molecular to individual levels. Mar Pollut Bull 95:665–677

    Article  CAS  PubMed  Google Scholar 

  • Newton J (2013) Glyphosate. Chemistry World, Royal Society of Chemistry. www.rsc.org/chemistryworld/2013/12/glyphosate-weedkiller-roundup-gm-podcast accessed 8 Aug 2014

  • Pang T, Lui J, Zhang L, Lin W (2012) Impacts of glyphosate on photosynthetic behaviors in Kappaphycus alvarezii and Neosiphonia savatieri detected by JIP-test. J Appl Phycol 24:467–473

    Article  CAS  Google Scholar 

  • Pechlaner R (2002) Glyphosate in herbicides: an overlooked threat to microbial bottom-up process in freshwater systems. Verh Internat Verein Limnol 28:1831-1835

  • Pérez GL, Torremorell A, Mugni H, Rodríguez P, Vera S, Do Nascimento M, Allende L, Bustingorry J, Escaray R, Ferraro M, Lzaguirre I, Pizarro H, Bonetto C, Morris DP, Zagarese H (2007) Effects of the herbicide RoundUp on freshwater microbial communities: a mesocosm study. Ecol Appl 17:2310–2322

    Article  PubMed  Google Scholar 

  • Perkins MJ (1997) Effects of two formulations of glyphosate and triclopyr on four non-target aquatic species: Xenopus laevis, Myriophyllum sibiricum, Lemna gibba and Tubifex. MSc Thesis, University of Guelph, Guelph, Ontario, Canada 110 pp

  • Relyea RA (2012) New effects of RoundUp® on amphibians: predators reduce herbicide mortality; herbicides induce antipredator morphology. Ecol Appl 22:634–647

    Article  PubMed  Google Scholar 

  • Russell DJ, Balazs GH (2000) Identification manual for dietary vegetation of the Hawaiian green turtle Chelonia mydas. National Marine Fishereis Service, Honolulu, Hawaii, NOAA-TM NMFS-SWFSC-294 pp. 1–49

    Google Scholar 

  • Sáez ME, Di Marzio WD, Alberdi JL, Tortorelli MDC (1997) Effects of technical grade and a commercial formulation of glyphosate on algal population growth. Bull Environ Contam Toxicol 59:638–644

    Article  Google Scholar 

  • Saxton M, Morrow EA, Bourbonniere RA, Wilhelm SW (2011) Glyphosate influence on phytoplankton community structure in Lake Erie. J Great Lakes Res 37:683–690

    Article  CAS  Google Scholar 

  • Schuette J (1998) Environmental fate of glyphosate. Environmental Monitoring and Pest Management, Dept. of Pesticide Regulation, State of California. http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/glyphos.pdf

  • Seefeldt SS, Jensen JE, Fuerst EP (1995) Log-logistic analysis of herbicide dose–response relationships. Weed Technol 9:218–227

    Google Scholar 

  • SePRO (2001) AquaPro® Herbicide Material Safety Data Sheet

  • Sjollema SB, Vavourakis CD, van der Geest HG, Vethaak AD, Admiraal W (2014) Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta. Front Mar Sci 1:13. doi:10.3389/fmars.2014.00013

    Article  Google Scholar 

  • Skeff W, Neumann C, Schulz-Bull DE (2015) Glyphosate and AMPA in the estuaries of the Baltic Sea method optimization and field study. Mar Pollut Bull 100:577–585

    Article  CAS  PubMed  Google Scholar 

  • Stachowski-Haberkorn S, Becker B, Marie D, Haberkorn H, Coroller L, De La Broise D (2008) Impact of Roundup on the marine microbial community, as shown by an in situ microcosm experiment. Aquat Toxicol 89:232–241

    Article  CAS  PubMed  Google Scholar 

  • Solomon KR, Thompson DG (2003) Ecological risk assessment for aquatic organisms from over-water uses of glyphosate. J Toxicol Environ Health 6:289–324

    Article  CAS  Google Scholar 

  • Stock JH, Iliffe TM, Williams D (1986) The concept “anchialine” reconsidered. Stygologia 2:90–92

    Google Scholar 

  • Transparency Market Research (2013) Glyphosate market: global industry analysis, share, size, growth, trends and forecast 2013–2019.

  • Tsui MTK, Chu LM (2008) Environmental fate and non-target impact of glyphosate-based herbicide (RoundUp) in a subtropical wetland. Chemosphere 71:439–446

    Article  CAS  PubMed  Google Scholar 

  • Turgut C, Fomin A (2002) Sensitivity of the rooted macrophyte Myriophyllum aquaticum (Vell.) Verdcourt to seventeen pesticides determined on the basis of EC50. Bull Environ Contam Toxicol 69:601–608

    Article  CAS  PubMed  Google Scholar 

  • U.S.EPA (1993) Reregistration eligibility decision: glyphosate. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, DC. http://www.epa.gov/oppsrrd1/REDs/old_reds/glyphosate.pdf

  • Vendrell E, Gómez de Barreda Ferrez D, Sabater C, Carrasco JM (2009) Effect of glyphosate on growth of four freshwater species of phytoplankton: a microplate bioassay. Bull Environ Contam Toxicol 82:538–542

    Article  CAS  PubMed  Google Scholar 

  • Vera MS, Lagomarsino L, Sylvester M, Pérez GL, Rodríguez P, Mugni H, Sinistro R, Herraro M, Bonetto C, Zagarese H, Pizarro H (2010) New evidence of RoundUp (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology 19:720–721

    Article  Google Scholar 

  • Wagner WL, Herbst DR, Sohmer SH (1990) Manual of the flowering plants of Hawai‘i, vol. 2. Bernice P. Bishop Museum special publication. University of Hawaii Press, Honolulu, Hawaii

    Google Scholar 

  • Yamamuro M (2012) Herbicide-induced macrophyte-to-phytoplankton shifts in Japanese lagoons during the last 50 years: consequences for ecosystem services and fisheries. Hydrobiologia 699:5–19

    Article  CAS  Google Scholar 

  • Yusof S, Ismail A, Alias MS (2014) Effect of glyphosate-based herbicide on early stages of Java medaka (Oryzias javanicus): a potential tropical test fish. Mar Pollut Bull 85:494–498

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following people for their support with this project: Dr. Jason Adolf, Dr. Steven Colbert, Dr. Ernest Kho, Jill Grotkin, and Jesse Gorges (UH-Hilo Marine Science), B. Wilkins (Keaukaha Community Association), Darin Igawa (Graphic Services UH-Hilo), and anonymous reviewers whose comments improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla J. McDermid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kittle, R.P., McDermid, K.J. Glyphosate herbicide toxicity to native Hawaiian macroalgal and seagrass species. J Appl Phycol 28, 2597–2604 (2016). https://doi.org/10.1007/s10811-016-0790-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0790-y

Keywords

Navigation