Skip to main content

Advertisement

Log in

Feasibility study of biogas upgrading coupled with nutrient removal from anaerobic effluents using microalgae-based processes

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The present research was conducted to simultaneously optimize biogas upgrading and carbon and nutrient removal from centrates in a 180-L high-rate algal pond interconnected to an external CO2 absorption unit. Different biogas and centrate supply strategies were assessed to increase biomass lipid content. Results showed 99 % CO2 removal efficiencies from simulated biogas at liquid recirculation rates in the absorption column of 9.9 m3 m−2 h−1, concomitant with nitrogen and phosphorus removal efficiencies of 100 and 82 %, respectively, using a 1:70 diluted centrate at a hydraulic retention time of 7 days. The lipid content of the harvested algal–bacterial biomass remained low (2.9–11.2 %) regardless of the operational conditions, with no particular trend over time. The good settling characteristics of the algal–bacterial flocs resulted in harvesting efficiencies over 95 %, which represents a cost-effective alternative for algal biomass reutilization compared to conventional physical–chemical techniques. Finally, high microalgae biodiversity was found regardless of the operational conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  PubMed  Google Scholar 

  • Alam F, Date A, Rasjidin R, Mobin S, Moria H, Baqui A (2012) Biofuel from algae—is it a viable alternative? Procedia Eng 49:221–227

    Article  CAS  Google Scholar 

  • Arbid Z, Ruiz J, Álvarez-Díaz P, Garrido-Pérez C, Barragán J, Perales JA (2013) Effect of pH control by means of flue gas addition on three different photo-bioreactors treating urban wastewater in long-term operation. Ecol Eng 57:226–235

    Article  Google Scholar 

  • Bahr M, Díaz I, Domínguez A, González-Sánchez A, Muñoz R (2014) Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents. Environ Sci Technol 48:573–581

    Article  CAS  PubMed  Google Scholar 

  • Bird RB, Stewart W, Lightfoot EN (2006) Transport phenomena. 2nd Edition. Ed. Limusa

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  PubMed  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  PubMed  Google Scholar 

  • Collet P, Hélias A, Lardon L, Ras M, Goy RA, Steve JP (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    Article  CAS  PubMed  Google Scholar 

  • De Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol 100:4332–4339

    Article  PubMed  Google Scholar 

  • De Godos I, Guzmán HO, Soto R, García-Encina P, Becares E, Muñoz R, Vargas VA (2011) Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment. Bioresour Technol 102:923–927

    Article  PubMed  Google Scholar 

  • BOE (Boletín oficial del Estado) (2013). https://www.boe.es/diario_boe/txt.php?id=BOE-A-2013-185 (Last accessed: 22 Sept 2014)

  • Devi MP, Swamy YV, Mohan SV (2013) Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrients supplementation. Bioresour Technol 142:278–286

    Article  Google Scholar 

  • Dominguez Cabanelas IT, Ruiz J, Arbib Z, Alexandre C, Garrido-Pérez C, Rogalla F, Nascimiento IA, Perales JA (2013) Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour Technol 131:429–436

    Article  Google Scholar 

  • Dong B, Ho N, Ogden K, Arnold RG (2014) Cultivation of Nannochloropsis salina in municipal wastewater or digester centrate. Ecotoxicol Environ Saf 103:45–53

    Article  CAS  PubMed  Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AE (2005) Standard methods for the examination of water and wastewater. 21st edition. American Public Health Association/American Water Works Association/ Water Environment Federation

  • Feng D, Chen Z, Xue S, Zhang W (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour Technol 102:6710–6716

    Article  CAS  PubMed  Google Scholar 

  • García J, Hernández MM, Mujeriego R (2000) Influence of phytoplankton composition on biomass removal from high-rate oxidation lagoons by means of sedimentation and spontaneous flocculation. Water Environ Res 72:230–237

    Article  Google Scholar 

  • González C, Marciniak J, Villaverde S, García-Encina PA, Muñoz R (2008) Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Appl Microbiol Biotechnol 80:891–898

    Article  PubMed  Google Scholar 

  • Guieysse B, Béchet Q, Shilton A (2013) Variability and uncertainty in water demand and water footprint assessments of fresh algae cultivation based on case studies from five climatic regions. Bioresour Technol 128:317–323

    Article  CAS  PubMed  Google Scholar 

  • Hernández D, Riaño B, Coca M, García-González MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945

    Article  Google Scholar 

  • Heubeck S, Craggs RJ, Shilton A (2007) Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond. Water Sci Technol 55:193–200

    Article  CAS  PubMed  Google Scholar 

  • Kandilian R, Pruvost J, Legrand J, Pilon L (2014) Influence of light absorption rate by Nannochloropsis oculata on triglyceride production during nitrogen starvation. Bioresour Technol 163:308–319

    Article  CAS  PubMed  Google Scholar 

  • Klok AJ, Martens DE, Wijffels R, Lamers PP (2013) Simultaneous growth and neutral lipid accumulation in microalgae. Bioresour Technol 134:233–243

    Article  CAS  PubMed  Google Scholar 

  • Kochert G (1978) Carbohydrate determination by the phenol-sulfuric acid method. In: Stein J (ed) Physiological and biochemical methods. Handbook of phycological methods. Cambridge University Press, London, pp 95–98

    Google Scholar 

  • Mandal S, Mallick N (2012) Biodiesel production by the green microalga Scenedesmus obliquus in a recirculatory aquaculture system. Appl Environ Microbiol 78:5929–5934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza JL, Granados MR, De Godos I, Acién FG, Molina E, Banks C, Heaven S (2013) Fluid-dynamic characterization of real scale raceway reactors for microalgae production. Biomass Bioenerg 54:267–275

    Article  CAS  Google Scholar 

  • Metcalf and Eddy, Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering and reuse, 4th edn. Mc. Graw Hill, New York

  • Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  PubMed  Google Scholar 

  • Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45:5861–5868

    Article  CAS  PubMed  Google Scholar 

  • Norsker NH, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production: a close look at the economics. Biotechnol Adv 29:24–27

    Article  CAS  PubMed  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011a) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  PubMed  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011b) Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Res 45:6637–6649

    Article  CAS  PubMed  Google Scholar 

  • Posadas E, García-Encina PA, Soltau A, Domínguez A, Díaz I, Muñoz R (2013) Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresour Technol 139:50–58

    Article  CAS  PubMed  Google Scholar 

  • Posadas E, Morales MM, Gómez C, Acién FG, Muñoz R (2015) Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J 265:239–248

    Article  CAS  Google Scholar 

  • Romero García JM, Guzmán JL, Moreno JC, Fernández-Sevilla JM (2012) Filtered Smith Predictor to control pH during enzymatic hydrolisis of microalgae to produce L-amino acids concentrates. Chem Eng Sci 82:121–131

    Article  Google Scholar 

  • Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry; http://www.mpch-mainz.mpg.de/∼sander/res/henry.html, 1999. (Last accessed: 20 March 2015)

  • Sepúlveda C, Acién FG, Gómez C, Jiménez Ruiz N, Riquelme C, Molina-Grima E (2015) Utilization of centrate for the production of the marine microalgae Nannochloropsis gaditana. Algal Res 9:107–116

    Article  Google Scholar 

  • Serejo ML, Posadas E, Boncz MA, Blanco S, García-Encina PA, Muñoz R (2015) Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ Sci Technol 49:3228–3236

    Article  CAS  PubMed  Google Scholar 

  • Shriwastav A, Bose P (2015) Algal growth in photo-bioreactors: impact of illumination strategy and nutrient availability. Ecol Eng 77:202–215

    Article  Google Scholar 

  • Sournia A (1978) Phytoplanton Manual. Museum National d’ Historie Naturelle, París. United Nations Educational. Scientific and Cultural Organization (Unesco)

  • Toledo-Cervantes A, Morales M, Novelo E, Revah S (2013) Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresour Technol 130:652–658

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Nordlander E, Thorin E, Yan J (2013) Microalgal biomethane production integrated in an existing biogas plant: a case study in Sweden. Appl Energ 112:478–484

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Biogas Fuel Cell S.A. and the Regional Government of Castilla y León (Project GR76, VA024U14, and RTA2013-00056-C03-02). A. Crespo, S. Santamarta, S. Arranz, J.M. Bueno, C. Mongil, and G. Villamizar are gratefully acknowledged for their practical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Muñoz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posadas, E., Szpak, D., Lombó, F. et al. Feasibility study of biogas upgrading coupled with nutrient removal from anaerobic effluents using microalgae-based processes. J Appl Phycol 28, 2147–2157 (2016). https://doi.org/10.1007/s10811-015-0758-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0758-3

Keywords

Navigation