Skip to main content
Log in

Habitat-specific differences in adaptation to light in freshwater diatoms

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The growth and physiological characteristics of eight strains of diatoms isolated from aquatic habitats with differing water column characteristics were studied under varying light intensities to compare adaptations to low and high light intensity. Diatoms isolated from different habitats were grouped into low light-adapted (LLA) and high light-adapted (HLA) diatoms based on their differences in growth and photoacclimation characteristics. LLA diatoms had higher growth rates and higher photosynthetic activity at relatively lower light intensities (2, 12.5, and 25 μmol photons m−2 s−1) compared to relatively higher light intensities (60 and 80 μmol photons m−2 s−1). HLA diatoms had higher growth rates and higher photosynthetic activity at relatively higher light intensities (60 and 80 μmol photons m−2 s−1) compared to relatively lower light intensities (2, 12.5 and 25 μmol photons m−2 s−1). LLA diatoms responded to high light by enhancing non-photochemical quenching (NPQ) while HLA diatoms responded to low light mainly by increasing chlorophyll a content. Habitat-specific differences in adaptation to light in diatoms led to differences in light intensity for the formation of diatom blooms in low-light ecosystems and high-light ecosystems. Based on the results of this study, we suggest that the adaptability of diatoms to local habitat conditions should be considered in order to understand the photosynthetic characteristics of these diatom species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anning T, MacIntyre HL, Pratt SM, Sammes PJ, Gibb S, Geider RJ (2000) Photoacclimation in the marine diatom Skeletonema costatum. Limnol Oceanogr 45:1807

    Article  Google Scholar 

  • Barnett A, Méléder V, Blommaert L, Lepetit B, Gaudin P, Vyverman W, Sabbe K, Dupuy C, Lavaud J (2014) Growth form defines physiological photoprotective capacity in intertidal benthic diatoms. ISME J 105:1–14

    Google Scholar 

  • Behrenfeld MJ, Prasil O, Babin M, Bruyant F (2004) In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. J Phycol 40:4–25

    Article  CAS  Google Scholar 

  • Bouvy M, Ba N, Ka S, Sane S, Pagano M, Arfi R (2006) Phytoplankton community structure and species assemblage succession in a shallow tropical lake (Lake Guiers, Senegal). Aquat Microb Ecol 45:147–161

    Article  Google Scholar 

  • Brunet C, Johnsen G, Lavaud J, Roy S (2011) Pigments and photoacclimation processes. In Phytoplankton pigments, characterization, chemotaxonomy and applications in oceanography. In: Roy S, Johnsen G, Llewellyn C, Skarstad E (eds) Oceanographic methodologies. SCOR-UNESCO Publishing, Cambridge, pp 445–454

    Google Scholar 

  • Brunet C, Conversano F, Margiotta F, Dimier C, Polimene L, Tramontano F, Saggiomo V (2013) Role of light and photophysiological properties on phytoplankton succession during the spring bloom in the north-western Mediterranean Sea. Adv Oceanogr Limnol 4:1–19

    Article  CAS  Google Scholar 

  • Cheah W, McMinn A, Griffiths FB, Westwood KJ, Wright SW, Clementson LA (2013) Response of phytoplankton photophysiology to varying environmental conditions in the sub-antarctic and polar frontal zone. Plos One 8:e72165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauta A, Devaux J, Piquemal F, Boumnich L (1990) Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia 207:221–226

    Article  Google Scholar 

  • Dimier C, Giovanni S, Ferdinando T, Brunet C (2009) Comparative ecophysiology of the xanthophyll cycle in six marine phytoplanktonic species. Protist 160:397–411

    Article  CAS  PubMed  Google Scholar 

  • Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102

    Article  CAS  PubMed  Google Scholar 

  • Ferris JA, Lehman JT (2007) Interannual variation in diatom bloom dynamics: roles of hydrology, nutrient limitation, sinking, and whole lake manipulation. Water Res 41:2551–2562

    Article  CAS  PubMed  Google Scholar 

  • Gameiro C, Zwolinski J, Brotas V (2011) Light control on phytoplankton production in a shallow and turbid estuarine system. Hydrobiologia 669:249–263

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gikuma-Njuru P, Guildford SJ, Hecky RE, Kling HJ (2013) Strong spatial differentiation of N and P deficiency, primary productivity and community composition between Nyanza Gulf and Lake Victoria (Kenya, East Africa) and the implications for nutrient management. Freshw Biol 58:2237–2252

    CAS  Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C, Goss R (2008) A new multicomponent NPQ mechanism in the diatom Cyclotella meneghiniana. Plant Cell Physiol 49:1217–1225

    Article  CAS  PubMed  Google Scholar 

  • Harris G (1978) Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Schweizerbart, Stuttgart

    Google Scholar 

  • Hartig JH, Wallen DG (1986) The influence of light and temperature on growth and photosynthesis of Fragilaria crotonensis Kitton. J Freshw Ecol 3:371–382

    Article  Google Scholar 

  • Hartig P, Wolfstein K, Lippemeier S, Colijn F (1998) Photosynthetic activity of natural microphytobenthos populations measured by fluorescence (PAM) and 14C-tracer methods: a comparison. Mar Ecol Prog Ser 166:53–62

    Article  Google Scholar 

  • Hijnen WA, Dullemont YJ, Schijven JF, Hanzens-Brouwer AJ, Rosielle M, Medema G (2007) Removal and fate of Cryptosporidium parvum, Clostridium perfringens and small-sized centric diatoms (Stephanodiscus hantzschii) in slow sand filters. Water Res 41:2151–2162

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Wei Y (2006) The freshwater algae of China: systematic, taxonomy and ecology. Science Press, Beijing (In Chinese)

    Google Scholar 

  • Huisman J, Sharples J, Stroom JM, Visser PM, Kardinaal WEA, Verspagen JMH, Sommeijer B (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970

    Article  Google Scholar 

  • Ihnkena S, Eggertb A, Beardalla J (2010) Exposure times in rapid light curves affect photosynthetic parameters in algae. Aquat Bot 93:185–194

    Article  Google Scholar 

  • Jaeger CG, Diehl S, Schmidt GM (2008) Influence of water-column depth and mixing on phytoplankton biomass, community composition, and nutrients. Limnol Oceanogr 53:2361–2373

    Article  Google Scholar 

  • Kashino Y, Kudoh S, Hayashi Y, Suzuki Y, Odate T, Hirawake T, Satoh K, Fukuchi M (2002) Strategies of phytoplankton to perform effective photosynthesis in the North Water. Deep Sea Res II 49:5049–5061

    Article  CAS  Google Scholar 

  • Kim DK, Jeong KS, Whigham PA, Joo GJ (2007) Winter diatom blooms in a regulated river in South Korea: explanations based on evolutionary computation. Freshw Biol 52:2021–2041

    Article  CAS  Google Scholar 

  • Köhler J (1994) Origin and succession of phytoplankton in a river-lake system (Spree, Germany). Hydrobiologia 289:73–83

    Article  Google Scholar 

  • Kolmakov VI, Gaevskii NA, Ivanova EA, Dubovskaya OP, Gribovskaya IV, Kravchuk ES (2002) Comparative analysis of ecophysiological characteristics of Stephanodiscus hantzschii Grun. in the periods of its bloom in recreational water bodies. Russ J Ecol 33:97–103

    Article  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Kropuenske LR, Mills MM, van Dijken GL, Bailey S, Robinson DH, Welschmeyer NA, Arrigo KR (2009) Photophysiology in two major southern ocean phytoplankton taxa: photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus. Limnol Oceanogr 54:1176–1196

    Article  CAS  Google Scholar 

  • Lavaud J, Rousseau B, Etienne AL (2004) General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol 40:130–137

    Article  Google Scholar 

  • Laviale M, Prygiel J, Lemoine Y, Courseaux A, Creach A (2009) Stream periphyton photoacclimation response in field conditions: effect of community development and seasonal changes. J Phycol 45:1072–1082

    Article  PubMed  Google Scholar 

  • Leland HV, Brown LR, Mueller DK (2001) Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors. Freshw Biol 46:1139–1167

    Article  Google Scholar 

  • Letelier RM, Karl DM, Abbott MR, Bidigare RR (2004) Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnol Oceanogr 49:508–519

    Article  CAS  Google Scholar 

  • MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis 25 irradiance response curves and photosynthetic pigments 522 in microalgae and cyanobacteria. J Phycol 38:17–38

    Article  Google Scholar 

  • Marra J, Heinemann K (1982) Photosynthesis response by phytoplankton to sunlight variability. Limnol Oceanogr 27:1141–1153

    Article  Google Scholar 

  • Migné A, Spilmont N, Davoult D (2004) In situ measurements of benthic primary production during emersion: seasonal variations and annual production in the Bay of Somme (eastern English Channel, France). Cont Shelf Res 24:1437–1449

    Article  Google Scholar 

  • Pannard A, Bormans M, Lagadeuc Y (2007) Short-term variability in physical forcing in temperate reservoirs: effects on phytoplankton dynamics and sedimentary fluxes. Freshw Biol 52:12–27

    Article  CAS  Google Scholar 

  • Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J Mar Res 38:687–701

    Google Scholar 

  • Polimene L, Brunet C, Butenschoen M, Martinez-Vicente V, Widdicombe C, Torres R, Allen JI (2014) Modelling a light-driven phytoplankton succession. J Plankton Res 36:214–229

    Article  CAS  Google Scholar 

  • Qi M, Chen J, Sun X, Deng X, Niu Y, Xie P (2012) Development of models for predicting the predominant taste and odor compounds in Taihu Lake, China. Plos One 7:e51976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA, Geider RJ (2003) Adaptation, acclimation and regulation in algal photosynthesis. In: Larkum AWD, Douglas SE, Raven JA (eds) Advances in photosynthesis and respiration. Springer, Dordrecht, pp 385–412

    Google Scholar 

  • Rhee GY, Gotham IJ (1981) The effect of environmental factors on phytoplankton growth: light and the interactions of light with nitrate limitation. Limnol Oceanogr 26:649–659

    Article  CAS  Google Scholar 

  • Robinson CT, Rushforth SR (1987) Effects of physical disturbance and canopy cover on attached diatom community structure in an Idaho stream. Hydrobiologia 154:49–59

    Article  Google Scholar 

  • Rodríguez P, Pizarro H (2007) Phytoplankton productivity in a highly colored shallow lake of a South American floodplain. Wetlands 27:1153–1160

    Article  Google Scholar 

  • Rodríguez P, Solange Vera M, Pizarro H (2012) Primary production of phytoplankton and periphyton in two humic lakes of a South American wetland. Limnology 13:281–287

    Article  Google Scholar 

  • Rothenberger MB, Burkholder JM, Wentworth TR (2009) Use of long-term data and multivariate ordination techniques to identify environmental factors governing estuarine phytoplankton species dynamics. Limnol Oceanogr 54:2107–2127

    Article  Google Scholar 

  • Schmitt M, Nixdorf B (1999) Spring phytoplankton dynamics in a shallow eutrophic lake. Hydrobiologia 408:269–276

    Article  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 49–70

    Google Scholar 

  • Serodio J, Cruz S, Vieira S, Brotas V (2005) Non-photochemical quenching of chlorophyll fluorescence and operation of the xanthophyll cycle in estuarine microphytobenthos. J Exp Mar Biol Ecol 326:157–169

    Article  CAS  Google Scholar 

  • Sokal MA (2007) Assessment of hydroecological changes at the Slave River Delta, NWT, using diatoms in seasonal, inter-annual and paleolimnological experiments. Waterloo, Ontario, Canada

  • Sommer U (1986) Phytoplankton competition along a gradient of dilution rates. Oecologia 68:503–506

    Article  PubMed  Google Scholar 

  • Stamenkovic M, Hanelt D (2013) Adaptation of growth and photosynthesis to certain temperature regimes is an indicator for the geographical distribution of Cosmarium strains (Zygnematophyceae, Streptophyta). Eur J Phycol 48:116–127

    Article  CAS  Google Scholar 

  • Stein JR, Hellebust JA (1979) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge

    Google Scholar 

  • Stempak JG, Ward RT (1964) An improved staining method for electron microscopy. J Cell Biol 22:697–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su W, Jakob T, Wilhelm C (2012) The impact of nonphotochemical quenching of fluorescence on the photon balance in diatoms under dynamic light conditions. J Phycol 48:336–346

    Article  CAS  PubMed  Google Scholar 

  • Su M, An W, Yu J, Pan S, Yang M (2014) Importance of underwater light field in selecting phytoplankton morphology in a eutrophic reservoir. Hydrobiologia 724:203–216

    Article  CAS  Google Scholar 

  • Thomas WH, Gibson CH (1990) Effects of small-scale turbulence on microalgae. J Appl Phycol 2:71–78

    Article  Google Scholar 

  • Tuji A (2000) The effect of irradiance on the growth of different forms of freshwater diatoms: implications for succession in attached diatom communities. J Phycol 36:659–661

    Article  Google Scholar 

  • van de Poll WH, Visser RJW, Buma AGJ (2007) Acclimation to a dynamic irradiance regime changes excessive irradiance sensitivity of Emiliania huxleyi and Thalassiosira weissflogii. Limnol Oceanogr 52:1430–1438

    Article  Google Scholar 

  • van Leeuwe MA, van Sikkelerus B, Gieskes WWC, Stefels J (2005) Taxon-specific differences in photoacclimation to fluctuating irradiance in an Antarctic diatom and a green flagellate. Mar Ecol Prog Ser 288:9–19

    Article  Google Scholar 

  • Wang Z, Wu W, Zuo M, Li D (2010) Niche analysis of phytoplankton community in Lake Chaohu. Resour Environ Yangtze Basin 19:685–691 (In Chinese)

    CAS  Google Scholar 

  • Wang P, Shen H, Xie P (2012) Can hydrodynamics change phosphorus strategies of diatoms?—nutrient levels and diatom blooms in lotic and lentic ecosystems. Microb Ecol 63:369–382

    Article  PubMed  Google Scholar 

  • Wang Y, Deng K, Wang X (2013) Effect of light, nutrient and diatom on the development of Phaeocystis globosa. J Ecol Sci 32:165–170 (In Chinese)

    Google Scholar 

  • Warnaars T, Hondzo M (2006) Small-scale fluid motion mediates growth and nutrient uptake of Selenastrum capricornutum. Freshw Biol 51:999–1015

    Article  Google Scholar 

  • Yang M, Bi Y, Hu J, Hu Z (2011) Diel vertical migration and distribution of phytoplankton during spring blooms in Xiangxi Bay, Three Gorges Reservoir. J Lake Sci 23:375–382 (In Chinese)

    Article  Google Scholar 

  • Yang Q, Xie P, Shen H, Xu J, Wang P, Zhang B (2012) A novel flushing strategy for diatom bloom prevention in the lower-middle Hanjiang River. Water Res 46:2525–2534

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Song L, Yu Z, Chen H (2007) Post-impoundment biomass and composition of phytoplankton in the Yangtze River. Int Rev Hydrobiol 92:267–280

    Article  Google Scholar 

  • Zhang Z, Huang X (1991) Research methods of freshwater plankton. Science Press, Beijing (In Chinese)

    Google Scholar 

  • Zhang Y, Qin B, Chen W, Gao G, Chen Y (2004) Experimental study on underwater light intensity and primary productivity caused by variation of total suspended matter. Adv Water Sci 15:615–620 (In Chinese)

    CAS  Google Scholar 

  • Znachor P, Visocka V, Nedoma J, Rychtecky P (2013) Spatial heterogeneity of diatom silicification and growth in a eutrophic reservoir. Freshw Biol 58:1889–1902

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. J.S. Owen for the valuable comments and for editing the manuscript and an anonymous reviewer and editor for their constructive suggestions. This work was supported by the National High Technology Research and Development Program of China (Grant No. 2012ZX07105-004), Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (No.52902-0900205040) and Hubei Project for Research and Development (No. 2008BCA004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Shen or Ping Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, P., Shen, H., Wang, W. et al. Habitat-specific differences in adaptation to light in freshwater diatoms. J Appl Phycol 28, 227–239 (2016). https://doi.org/10.1007/s10811-015-0531-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0531-7

Keywords

Navigation