Skip to main content
Log in

Biochemical characterization of Pyropia yezoensis-AP1 strain accompanies the resistance reaction to the red rot disease pathogen, Pythium porphyrae

  • 5th Congress of the International Society for Applied Phycology
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The biochemical profile of the Pyropia yezoensis-AP1 strain, a strain which shows resistance to red rot disease, was compared with that of a normal P. yezoensis cultivar. Levels of chlorophyll a, phycoerythrin, and phycocyanin were higher in P. yezoensis-AP1 than those in the normal P. yezoensis cultivar. Two-dimensional electrophoresis found a total of 132 and 128 distinct spots for total protein samples of P. yezoensis-AP1 and P. yezoensis, respectively. About 89.6 % of the total components were common to both P. yezoensis-AP1 and P. yezoensis, and 10.4 % were more abundant in the P. yezoensis-AP1 than P. yezoensis. The amount of total free amino acid in P. yezoensis-AP1 was less than that in the P. yezoensis cultivar, but taurine, glutamic acid, citrulline, and arginine content were higher in the P. yezoensis-AP1 strain. The porphyran content of P. yezoensis-AP1 (11.9 ± 0.5 % dry weight) was higher than that of P. yezoensis cultivar (9.5 ± 0.4 % dry weight). In the porphyran fraction, the content of 3,6-anhydro-L-galactose was higher in P. yezoensis-AP1 than P. yezoensis, and sulfate content was higher in the P. yezoensis cultivar than P. yezoensis-AP1. The results indicate that the difference of chemical composition between P. yezoensis-AP1 and P. yezoensis cultivar helps to explain the increased resistance to red rot disease in the AP1 strain. This finding provides a good starting point for the development of more resistant strains of P. yezoensis that will reduce the incidence of red rot disease on Pyropia farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albershiem P, Anderson-Prouty AJ (1975) Carbohydrates, proteins, cell surface, and the biochemistry of pathogenesis. Annu Rev Plant Physiol 26:31–52

    Article  Google Scholar 

  • Amano H, Suginaga R, Arashima K, Noda H (1995) Immunological detection of the fungal parasite, Pythium sp.; the causative organism of red rot disease in Porphyra yezoensis. J Appl Phycol 7:53–58

    Article  Google Scholar 

  • Amano H, Sakaguchi K, Maegawa M, Noda H (1996) The use of a monoclonal antibody for the detection of fungal parasite, Pythium sp., the causative organism of red rot disease, in seawater from Porphyra cultivation farms. Fish Sci 62:556–560

    CAS  Google Scholar 

  • Andrews JH (1976) The pathology of marine algae. Biol Rev Camb Philos Soc 51:211–253

    Article  CAS  Google Scholar 

  • Blakesley RW, Boezi JA (1977) A new staining technique for proteins in polyacryamide gels using Coomassie Brilliant Blue G250. Anal Biochem 82:580–582

    Article  CAS  PubMed  Google Scholar 

  • Bouarab K, Potin P, Correa J, Kloareg B (1999) Sulfated oligosaccharides mediate the interaction between a marine red alga and its green algal pathogenic endophyte. Plant Cell 11:1–17

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitative of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–354

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fujiwara T (1955) Studies on chromoproteins in japanese Nori (Porphyra tenera). I. A new method for the crystallization of phycoerythrin and phycocyanin. J Biochem 42:411–417

    CAS  Google Scholar 

  • Hattori A, Fujita Y (1959) Spectroscopic studies on the phycobilin pigments obtained from blue-green and red algae. J Biochem 46:903–909

    CAS  Google Scholar 

  • Hinch JM, Clarke AE (1980) Adhesion of fungal zoospores to root surfaces is mediated by carbohydrate determinants of the root slime. Physiol Plant Pathol 16:303–307

    Article  CAS  Google Scholar 

  • Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerwin JL, Johnson LM, Whisler HC, Tuininga AR (1992) Infection and morphogenesis of Pythium marinum in species in species of Porphyra and other red algae. Can J Bot 70:1017–1024

    Article  Google Scholar 

  • Lahaye M, Yaphe W (1989) The chemical structure of agar from Gracilaria compressa (C. Agardh) Greville, G. cervicornis (Turner) J. Agardh, G. damaecornis J. Agardh and G. domingensis Sonder ex Kutzing (Gigartinales, Rhodophyta). Bot Mar 32:369–377

    Article  CAS  Google Scholar 

  • McCandless EL, Craigie JS (1979) Sulfated polysaccharides in red and brown algae. Annu Rev Plant Physiol 30:41–53

    Article  CAS  Google Scholar 

  • Meeks JC (1974) Chlorophylls. In: Stewart WDP (ed) Algal Physiology and Biochemistry, 9th edn. Blackwell Scientific Publications, Oxford, pp 161–166

    Google Scholar 

  • Mukai LS, Craigie JS, Brown RG (1981) Chemical composition and structure of the cell walls of the conchocelis and thallus phases of Porphyra tenera (Rhodophyceae). J Phycol 17:192–198

    Article  CAS  Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  PubMed Central  Google Scholar 

  • Park CS (2006) Rapid detection of Pythium porphyrae in commercial samples of dried Porphyra yezoensis sheets by polymerase chain reaction. J Appl Phycol 18:203–207

    Article  CAS  Google Scholar 

  • Park CS, Hwang EK (2014) Isolation and evaluation of a strain of Pyropia yezoensis (Bangiales, Rhodophyta) resistant to red rot disease. J Appl Phycol 26:811–817

    Article  CAS  Google Scholar 

  • Park CS, Kakinuma M, Amano H (2001) Detection and quantitative analysis of zoospores of Pythium porphyrae, causative organism of red rot disease in Porphyra, by competitive PCR. J Appl Phycol 13:433–441

    Article  CAS  Google Scholar 

  • Park CS, Kakinuma M, Amano H (2006) Forecasting infections of the red rot disease on Porphyra yezoensis Ueda (Rhodophyta) cultivation farms. J Appl Phycol 18:295–299

    Article  Google Scholar 

  • Polne-Fuller M, Gibor A (1986) Calluses, cells, and protoplasts in studies towards genetic improvement of seaweeds. Aquaculture 57:117–123

    Article  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori A (eds) Cultures and Collection of Algae. Proc USA-Japan Conf Hakone Japan Soc Plant Physiol p. 63-75

  • Su J-C, Hassid WZ (1962) Carbohydrates and nucleotides in the red alga Porphyra perforata. I. Isolation and identification of carbohydrates. Biochemistry 1:468–474

    Article  CAS  PubMed  Google Scholar 

  • Tani T, Ouchi S, Onoe T, Naito N (1975) Irreversible recognition demonstrated in the hypersensitive response of oat leaves against crown rust fungus. Phytopathology 65:1190–1193

    Google Scholar 

  • Uppalapati SR, Fujita Y (2000a) Carbohydrate regulation of attachment, encystment, and appressorium formation by Pythium porphyrae (Oomycota) Zoospores on Porphyra yezoensis (Rhodophyta). J Phycol 36:359–366

    Article  CAS  Google Scholar 

  • Uppalapati SR, Fujita Y (2000b) Red rot resistance in interspecific protoplast fusion product progeny of Porphyra yezoensis and P. tenuipedalis (Bangiales, Rhodophyta). Phycol Res 48:281–289

    Article  Google Scholar 

  • Uppalapati SR, Fujita Y (2001) The relative resistances of Porphyra species (Bangiales, Rhodophyta) to infection by Pythium porphyrae (Peronosporales, Oomycota). Bot Mar 44:1–7

    Article  Google Scholar 

  • Weinberger F, Friedlander M, Hoppe H-G (1999) Oligoagars elicit a physiological response in Gracilaria conferta (Rhodophya). J Phycol 35:747–755

    Article  CAS  Google Scholar 

  • Yamamoto H, Tani T, Naito N (1975) Changes in protein contents of oat leaves during the resistant reaction against Puccinia coronata avenae. Phytopathol Z 82:138–145

    Article  CAS  Google Scholar 

  • Yan X-H, Fujita Y (2000) Resistance of Porphyra yezoensis pigmentation mutants to Pythium porphyrae and Olpidiopsis sp. Abstracts for the meeting of the Japanese Society of Fisheries Science. p. 204

  • Yan X-H, Fujita Y, Aruga Y (2000) Induction and characterization of pigmentation mutants in Porphyra yezoensis (Bangiales, Rhodophyta). J Appl Phycol 12:69–81

    Article  CAS  Google Scholar 

  • Yaphe W, Arsenault GP (1965) Improved resorcinol reagent for the determination of fructose, and of 3,6-anhydrogalactose in polysaccharides. Anal Biochem 13:143–148

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009–0093828), and NFRDI (RP-2014-AQ-061). The authors would like to thank Dr Philip Heath (New Zealand) for reviewing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Kyoung Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C.S., Hwang, E.K. Biochemical characterization of Pyropia yezoensis-AP1 strain accompanies the resistance reaction to the red rot disease pathogen, Pythium porphyrae . J Appl Phycol 27, 2149–2156 (2015). https://doi.org/10.1007/s10811-015-0527-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0527-3

Keywords

Navigation