Skip to main content
Log in

The colorimetric assay of viability for algae (CAVA): a fast and accurate technique

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Determining the fraction of viable cells in algal cultures is critical to improve the understanding and control of algal microbiology, ecology, and biotechnology. Whereas current techniques for algal viability determination can be rather cumbersome, this paper describes a new assay that enables the rapid quantification of algal viability using only spectrophotometric measurements. This technique, henceforth named colorimetric assay of viability for algae (CAVA), relies on the selective adsorption of erythrosine by non-viable cells and was validated on the algae species Chlamydomonas reinhardtii and Chlorella vulgaris. The results obtained by the CAVA test were in good agreement with the in situ measurement of oxygen production rates. In addition, the CAVA test was shown to quantify the viability of algal samples regardless of the cause of death (heating, UV irradiation, or H2O2 exposure). The CAVA technique has therefore the potential to offer a fast and universal approach to measure the viability of algal samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Mikrobiol 69:114–120

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA, Berges JA, Harisson PJ, Watanabe MM (2005) Appendix A-Recipes for freshwater and seawater media. In: Andersen RA (ed) Algal culturing techniques. Elsevier, Amsterdam, pp 429–530

    Google Scholar 

  • Alías CB, García-Malea López MC, Acién Fernández FG, Fernández Sevilla JM, García Sánchez JL, Molina Grima E (2004) Influence of power supply in the feasibility of Phaeodactylum tricornutum cultures. Biotechnol Bioeng 87:723–733

  • Béchet Q, Chambonnière P, Shilton A, Guizard G, Guieysse B (2014) Algal productivity modeling: a step toward accurate assessments of full-scale algal cultivation. Biotechnol Bioeng. doi:10.1002/bit.25517

  • Béchet Q, Shilton A, Fringer O, Munoz R, Guieysse B (2010) Mechanistic modelling of broth temperature in outdoor photobioreactors. Environ Sci Technol 44:2197–2203

    Article  PubMed  Google Scholar 

  • Berglund DL, Taffs RE, Robertson NP (1987) A rapid analytical technique for flow cytometric analysis of cell viability using Calcofluor White M2R. Cytometry 8:421–426

    Article  CAS  PubMed  Google Scholar 

  • Breeuwer P, Abee T (2000) Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 55:193–200

    Article  CAS  PubMed  Google Scholar 

  • Capasso JM, Cossío BR, Berl T, Rivard CJ, Jiménez C (2003) A colorimetric assay for determination of cell viability in algal cultures. Biomol Eng 20:133–138

  • Clarke JM, Gillings MR, Altavilla N, Beattie AJ (2001) Potential problems with fluorescein diacetate assays of cell viability when testing natural products for antimicrobial activity. J Biol Methods 46:261–267

    CAS  Google Scholar 

  • Drábková M, Admiraal W, Marsálek B (2007) Combined exposure to hydrogen peroxide and lights selective effects on cyanobacteria, green algae, and diatoms. Environ Sci Technol 41:309–314

  • Garvey M, Moriceau B, Passow U (2007) Applicability of the FDA assay to determine the viability of marine phytoplankton under different environmental conditions. Mar Ecol Prog Ser 352:17–26

    Article  Google Scholar 

  • Garza DR, Suttle CA (1998) The effect of cyanophages on the mortality of Synechococcus spp. and selection for UV resistant viral communities. Microb Ecol 36:281–292

    Article  PubMed  Google Scholar 

  • Gilbert F, Galgani F, Cadiou Y (1992) Rapid assessment of metabolic activity in marine microalgae: application in ecotoxicological tests and evaluation of water quality. Mar Biol 112:199–205

    Article  CAS  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi. Proc Natl Acad Sci U S A 54:1665–1669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gudin C, Chaumont D (1991) Cell fragility—the key problem of microalgae mass production in closed photobioreactors. Bioresour Technol 38:145–151

    Article  Google Scholar 

  • Gupta VK, Mittal A, Kurup L, Mittal J (2006) Adsorption of a hazardous dye, erythrosine, over hen feathers. J Colloid Interface Sci 304:52–57

    Article  CAS  PubMed  Google Scholar 

  • Häder DP, Kumar HD, Smith RC, Worrest RC (2007) Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 6:267–285

    Article  PubMed  Google Scholar 

  • Hwang SW, Horneland W (1965) Survival of algal cultures after freezing by controlled and uncontrolled cooling. Cryobiology 1:305–311

    Article  CAS  PubMed  Google Scholar 

  • Imase M, Ohko Y, Takeuchi M, Hanada S (2013) Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis. Int Biodeterior Biodegrad 78:1–6

    Article  CAS  Google Scholar 

  • Jain R, Sikarwar S (2009) Adsorptive removal of Erythrosine dye onto activated low cost de-oiled mustard. J Hazard Mater 164:627–633

    Article  CAS  PubMed  Google Scholar 

  • James GO, Hocart CH, Hillier W, Chen H, Kordbacheh F, Price GD, Djordjevic MA (2011) Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour Technol 102:3343–3351

    Article  CAS  PubMed  Google Scholar 

  • Low KS, Lee CK, Toh BL (1994) Binding of basic dyes by the algae, Chara aspera. Pertanika J Sci Technol 2(1):85–92

    Google Scholar 

  • Madigan MT, Martinko JM (2006) Brock—biology of microorganisms, 11th edn. Pearson Prentice Hall, Upper Saddle River, 07458

    Google Scholar 

  • Markelova AG, Vladimirova MG, Kuptsova ES (2000) A comparison of cytochemical methods for the rapid evaluation of microalgal viability. Russ J Plant Physiol 47:815–819

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Kurup L, Singh AK (2006) Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials—bottom ash and de-oiled soya as adsorbents. J Hazard Mater B 138:95–105

    Article  CAS  Google Scholar 

  • Pouneva I (1997) Evaluation of algal culture viability and physiological state by fluorescent microscopic methods. Bulg J Plant Physiol 23:67–76

    Google Scholar 

  • Saga N, Machiguchi Y, Sanbonsuga Y (1987) Application of staining for determining viability of cultured algal cells. Bull Hokkaido Reg Fish Res Lab 51:39–44

    Google Scholar 

  • Sato M, Murata Y, Mizusawa M, Iwahashi H, Oka S (2004). A simple and rapid dual fluorescence viability assay for Microalgae. Microbiol Cult Coll Dec. 20(2):53–59

  • Schulze K, López DA, Tillich UM, Frohme M (2011) A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ. BMC Biotechnol 11:118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Steinberg MK, Lemieux EJ, Drake LA (2011) Determining the viability of marine protists using a combination of vital, fluorescent stains. Mar Biol 158:1431–1437

    Article  Google Scholar 

  • Venkata Mohan S, Ramanaiah SV, Sarma PN (2008) Biosorption of direct azo dye from aqueous phase onto Spirogyra sp. I02: evaluation of kinetics and mechanistic aspects. Biochem Eng J 38:61–69

    Article  Google Scholar 

Download references

Acknowledgments

Dr. Mike Packer, Cawthron Institute (New Zealand), is kindly acknowledged for providing axenic cultures of C. reinhardtii. Cyril Breton, Ecole Centrale Paris (France), and Laura Etienne, Massey University (New Zealand), are also acknowledged for preliminary experimental work during the technique development. Maxence Plouviez, Massey University (New Zealand), is also thanked for his help all along the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Guieysse.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 651 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Béchet, Q., Feurgard, I., Guieysse, B. et al. The colorimetric assay of viability for algae (CAVA): a fast and accurate technique. J Appl Phycol 27, 2289–2297 (2015). https://doi.org/10.1007/s10811-014-0508-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0508-y

Keywords

Navigation