Skip to main content

Advertisement

Log in

Reliable production of microalgae biomass using a novel microalgae platform

  • 5th Congress of the International Society for Applied Phycology
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A microalgae platform, consisting of four photobioreactor units incorporating a novel biomimetic design, has been installed at the Biosolar Center in Koethen, Germany. The novel photobioreactor consists of a flexible, tubular double-wall hose system (silicone based) with integrated temperature control in a closed cycle. The modular-arranged platform system (total cultivation volume 1700 L) has been designed for stable long-term cultivation of microalgae biomass in outdoor use. Cultures with Scenedesmus and Chlorella species have been grown outdoors at their optimal growth temperature (avg. 26 °C) for 145 days during spring and summer and were tested successfully for the stable production of microalgae (avg. biomass productivity 0.3 g L−1 day−1 (max. 0.75 g L−1 day−1)) with an overall photosynthetic conversion efficiency of 7.2 % based on photosynthetically active radiation. The average calorific value of the produced biomass is 23.25 MJ kg−1 with defined product quality (content relating to biomass dry weight: proteins 0.40 g g−1, lipophilic compounds 0.38 g g−1 and total carotenoids 11 mg g−1). This outdoor concept is continuously adjustable to maintain an optimal environment for microalgae cultures (in particular light entry, temperature control and limiting of oxygen levels).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  PubMed  Google Scholar 

  • Barbosa MJ (2003) Microalgal photobioreactors: scale-up and optimisation. PhD Thesis, Wageningen University, Wageningen, The Netherlands

  • Bilad MR, Arafat HA, Vankelecom IFJ (2014) Membrane technology in microalgae cultivation and harvesting: a review. Biotechnol Adv 32:1283–1300

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of lipid extraction and purification. Can J Physiol Pharmacol 37:911–917

    Article  CAS  Google Scholar 

  • Bolton JR, Hall DO (1991) The maximum efficiency of photosynthesis. Photochem Photobiol 53:545–548

    Article  CAS  Google Scholar 

  • Borowitzka MA (1996) Closed algal photobioreactors: design considerations for large-scale systems. J Mar Biotechnol 4:185–191

    CAS  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Brennan L, Owende P (2013) Biofuels from microalgae: towards meeting advanced fuel standards. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 553–599

    Chapter  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  PubMed  Google Scholar 

  • Chai X, Zhao X (2012) Enhanced removal of carbon dioxide and alleviation of dissolved oxygen accumulation in photobioreactor with bubble tank. Bioresour Technol 116:360–365

    Article  CAS  PubMed  Google Scholar 

  • Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329

    Article  CAS  Google Scholar 

  • Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195:35–49

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Davis R, Aden A, Pienkos PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531

    Article  Google Scholar 

  • Hinkens D (2013) Gravity flow tubular photobioreactor and photobioreactor farm. US Patent US20130023043

  • Hulatt CJ, Thomas DN (2011) Energy efficiency of an outdoor microalgal photobioreactor sited at mid-temperate latitude. Bioresour Technol 102:6687–6695

    Article  CAS  PubMed  Google Scholar 

  • Jacobi A, Posten C (2013) Energy considerations of photobioreactors. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 223–232

    Chapter  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Laurens LML, Dempster TA, Jones HDT, Wolfrum EJ, Van Wychen S, McAllister JSP, Rencenberger M, Parchert KJ, Gloe LM (2012) Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Anal Chem 84:1879–1887

    Article  CAS  PubMed  Google Scholar 

  • Lourenço SO, Barbarino E, Lavín PL, Lanfer Marquez UM, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39:17–32

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Moheimani NR (2013) Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp (Chlorophyta) in bag photobioreactors. J Appl Phycol 25:167–176

    Article  CAS  Google Scholar 

  • Molina Grima E, Sánchez Pérez JA, García Camacho F, García Sánchez JL, Acién Fernández FG, López Alonso D (1994) Outdoor culture of Isochrysis galbana ALII-4 in a closed tubular photobioreactor. J Biotechnol 37:159–166

    Article  CAS  Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69:693–698

    Article  CAS  PubMed  Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Rees C, Pfaller R, Walter C, Cotta F (2011) Tubular photobioreactor. WIPO patent 2011048108 A2

  • Muller-Feuga A, Lemar M, Vermel E, Pradelles R, Rimbaud L, Valiorgue P (2012) Appraisal of a horizontal two-phase flow photobioreactor for industrial production of delicate microalgae species. J Appl Phycol 24:349–355

    Article  CAS  Google Scholar 

  • Ojanen S, Tyystjärvi E, Holmberg H, Ahtila P (2014) Porous membrane as a means of gas and nutrient exchange in a tubular photobioreactor. J Appl Phycol. doi:10.1007/s10811-014-0397-0:1-7

    Google Scholar 

  • Olaizola M (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J Appl Phycol 12:499–506

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo‐bioreactors for cultivation of microalgae. Eng Life Sci 9:165–177

    Article  CAS  Google Scholar 

  • Posten C, Rosello‐Sastre R (2010) Microalgae reactors. In: Ullmann’s encyclopedia of industrial chemistry. Wiley‐VCH, Weinheim, pp 145–156

  • Raes EJ, Isdepsky A, Muylaert K, Borowitzka MA, Moheimani NR (2014) Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond. J Appl Phycol 26:247–255

    Article  CAS  Google Scholar 

  • Ras M, Steyer JP, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12:153–164

    Article  CAS  Google Scholar 

  • Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing Ltd, Oxford, pp 125–177

    Google Scholar 

  • Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332

    Article  Google Scholar 

  • Robinson LF, Morrison AW, Bamforth MR (1988) Improvements relating to biosynthesis. European Patent EP0261872A2

  • Schoepp NG, Stewart RL, Sun V, Quigley AJ, Mendola D, Mayfield SP, Burkart MD (2014) System and method for research-scale outdoor production of microalgae and cyanobacteria. Bioresour Technol 166:273–281

    Article  CAS  PubMed  Google Scholar 

  • Scragg AH, Illmann AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73

    Article  CAS  Google Scholar 

  • Setlik I (1968) Growth and photosynthetic characteristics of algae. In: Necas J, Lhotský O (ed) Annual report of the Laboratory of Experimental Algology and Department of Applied Algology for the Year 1967, Trebon. pp 71–128

  • Sierra E, Acién FG, Fernández JM, García JL, González C, Molina E (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147

    Article  CAS  Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Kruse O, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564

    Article  CAS  PubMed  Google Scholar 

  • Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Publishing, Oxford, pp 178–214

    Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  PubMed  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Hall DO (1996) Photosynthetic CO2 conversion technologies using a photobioreactor incorporating microalgae—energy and material balances. Energy Convers Manag 37:1321–1326

    Article  CAS  Google Scholar 

  • Watanabe Y, de la Noüe J, Hall DO (1995) Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium Spirulina platensis. Biotechnol Bioeng 47:261–269

    Article  CAS  PubMed  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  • Zittelli GC, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In Richmond A, Hu Q (eds) Handbook of microalgal culture, 2nd edn. Wiley, pp 225–266

Download references

Acknowledgments

This R&D work of the research group of Prof. Dr. C. Griehl and GICON® is funded by the European Union and the German Federal State of Saxony-Anhalt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola Griehl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthes, S., Matschke, M., Cotta, F. et al. Reliable production of microalgae biomass using a novel microalgae platform. J Appl Phycol 27, 1755–1762 (2015). https://doi.org/10.1007/s10811-014-0502-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0502-4

Keywords

Navigation