Skip to main content
Log in

Real-time monitoring, diagnosis, and time-course analysis of microalgae Scenedesmus AMDD cultivation using dual excitation wavelength fluorometry

  • 5th Congress of the International Society for Applied Phycology
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Dual excitation wavelength fluorometry was used for real-time monitoring and diagnosis of the growth of the microalgae Scenedesmus AMDD in a 300-L continuous photobioreactor (PBR). Emission spectra were acquired at 1-min intervals using excitation lights at 365 and 540 nm. Real-time dry weight estimations were achieved using linear regression with the chlorophyll peak, while protein estimations required a more complex Principal Component Regression model, which takes advantage of the full emission spectrum. The resulting regression coefficients were 0.95 and 0.80, respectively. Furthermore, the spectra were analyzed using multivariate curve resolution technique. The proposed approach for fluorescence-based, real-time measurements of key algae cultivation parameters and culture state diagnosis was successfully demonstrated in a 42-day PBR validation test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bezemer E, Rutan S (2002) Resolution of overlapped NMR spectra by two-way multivariate curve resolution alternating least squares with imbedded kinetic fitting. Anal Chim Acta 459:277–289

    Article  CAS  Google Scholar 

  • Coen M, Ruepp SU, Lindon JC, Nicholson JK, Pognan F, Lenz EM, Wilson ID (2004) Integrated application of transcriptomics and metabonomics yields new insight into the toxicity due to paracetamol in the mouse. J Pharm Biomed Anal 35:93–105

    Article  CAS  PubMed  Google Scholar 

  • de Juan A, Bogaert B, Skhez FC, Massart DL (1996) Application of the needle algorithm for exploratory analysis and resolution of HPLC-DAD data. Chemom Intell Lab Syst 33:133–145

    Article  Google Scholar 

  • de Juan A, Vander Heyden Y, Tauler R, Massart DL (1997) Assessment of new constraints applied to the alternating least squares method. Anal Chim Acta 346:307–318

    Article  Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103:296–304

    Article  PubMed  Google Scholar 

  • Dickinson KE, Whitney CG, McGinn PJ (2013) Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp. AMDD. Algal Res 2:127–134

    Article  Google Scholar 

  • Elliott S, Lead JR, Baker A (2006) Characterization of the fluorescence from freshwater, planktonic bacteria. Water Res 40:2075–2083

    Article  CAS  PubMed  Google Scholar 

  • Gabriel Acién Fernández F, González-López CV, Fernández Sevilla JM, Molina Grima E (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol Biotech 96:577–586

    Article  Google Scholar 

  • Hantelmann K, Kollecker M, Hull D, Hitzmann B, Scheper T (2006) Two-dimensional fluorescence spectroscopy: a novel approach for controlling fed-batch cultivations. J Biotech 121:410–417

    Article  CAS  Google Scholar 

  • Havlik I, Lindner P, Scheper T, Reardon KF (2013) On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends Biotechnol 31:406–414

    Article  CAS  PubMed  Google Scholar 

  • Karakach TK, Flight RM, Wentzell PD (2007) Bootstrap method for the estimation of measurement uncertainty in spotted dual-color DNA microarrays. Anal Bioanal Chem 389:2125–2141

    Article  CAS  PubMed  Google Scholar 

  • Karakach TK, Knight R, Lenz EM, Viant MR, Walter JA (2009a) Analysis of time course 1H NMR metabolomics data by multivariate curve resolution. Magn Reson Chem 47:S105–S117

    Article  CAS  PubMed  Google Scholar 

  • Karakach TK, Wentzell PD, Walter JA (2009b) Characterization of the measurement error structure in 1D 1H NMR data for metabolomics studies. Anal Chim Acta 636:163–174

    Article  CAS  PubMed  Google Scholar 

  • Kennard RW, Stone LA (1969) Technometrics. Comp Aided Design Exp 11:137–148

    Google Scholar 

  • Lawton WH, Sylvestre EA (1971) Self-modeling curve resolution. Technometrics 13:617–633

    Article  Google Scholar 

  • Leger MN, Wentzell PD (2002) Dynamic Monte Carlo self-modeling curve resolution method for multicomponent mixtures. Chemom Intell Lab Syst 62:171–188

    Article  CAS  Google Scholar 

  • Martens H, Naes T (1992) Multivariate Calibration. John Wiley & Sons, New York

  • McGinn PJ, Dickinson KE, Bhatti S, Frigon J-C, Guiot SR, O’Leary SJB (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247

    Article  CAS  PubMed  Google Scholar 

  • McGinn PJ, Dickinson KE, Park KC, Whitney CG, MacQuarrie SP, Black FJ, Frigon J-C, Guiot SR, O'Leary SJB (2012) Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res 1:155–165

    Article  Google Scholar 

  • Morel E, Santamaria K, Perrier M, Guiot SR, Tartakovsky B (2004) Application of multi-wavelength fluorometry for on-line monitoring of an anaerobic digestion process. Wat Res 38:3287–3296

    Article  CAS  Google Scholar 

  • Skibsted E, Lindemann C, Roca C, Olsson L (2001) On-line bioprocess monitoring with a multi-wavelength fluorescence sensor using multivariate calibration. J Biotechnol 88:47–57

    Article  CAS  PubMed  Google Scholar 

  • Tauler R (2007) Application of non-linear optimization methods to the estimation of multivariate curve resolution solutions and of their feasible band boundaries in the investigation of two chemical and environmental simulated data sets. Anal Chim Acta 595:289–298

    Article  CAS  PubMed  Google Scholar 

  • Tauler R, Kowalski B (1993) Multivariate curve resolution applied to spectral data from multiple runs of an industrial process. Anal Chem 65:2040–2047

    Article  CAS  Google Scholar 

  • Vandeginste BGM, Massart DL, Buydens LMC, de Jong S, Lewi PJ, Smeyers-Verbeke J (2003) Handbook of chemometrics and qualimetrics: Part B. In: Data handling in science and technology, vol 20. Elsevier, Amsterdam, pp 243–250

  • Wentzell PD, Andrews DT, Hamilton DC, Faber K, Kowalski BR (1997) Maximum likelihood principal component analysis. J Chemmom 11:339–366

    Article  CAS  Google Scholar 

  • Wentzell PD, Karakach TK, Roy S, Martinez MJ, Allen CP, Werner-Washburne M (2006) Multivariate curve resolution of time course microarray data. BMC Bioinf 7:343

    Article  Google Scholar 

  • Wiley PE, Campbell JE, McKuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338

    Article  CAS  PubMed  Google Scholar 

  • Winning H, Larsen FH, Bro R, Engelsen SB (2008) Quantitative analysis of NMR spectra with chemometrics. J Magn Reson 190:26–32

    Article  CAS  PubMed  Google Scholar 

  • Yun J-H, Smith VH, deNoyelles FJ, Roberts GW, Stagg-Williams SM (2014) Freshwater macroalgae as a biofuels feedstock: mini-review and assessment of their bioenergy potential. Ind Biotechnol 10:212–220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Tartakovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakach, T.K., McGinn, P.J., Choi, J. et al. Real-time monitoring, diagnosis, and time-course analysis of microalgae Scenedesmus AMDD cultivation using dual excitation wavelength fluorometry. J Appl Phycol 27, 1823–1832 (2015). https://doi.org/10.1007/s10811-014-0494-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0494-0

Keywords

Navigation