Skip to main content
Log in

Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles

  • 5th Congress of the International Society for Applied Phycology
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Green synthesis of iron nanoparticles using a soil microalga, Chlorococcum sp. MM11, and their application in chromium remediation have been investigated. Spherical-shaped nanoiron was synthesized by treating the exponentially growing culture of Chlorococcum sp. with 0.1 M iron chloride solution for 48 h and incubating it under shaking in the dark. The appearance of a yellowish brown colour indicated the biotransformation of bulk iron into nanoiron. Morphological characteristics of nanoparticles with transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the presence of spherical-shaped nanoiron ranging in size from 20 to 50 nm. TEM imaging also revealed the localization of nanoiron on the microalgal cell surface, inside as well as outside the cell. Fourier transform infrared spectroscopy (FTIR) analysis confirmed the involvement of carbonyl and amine bonds from polysaccharides and glycoproteins present in the algal cell wall in the bioreduction as well as capping of nanoiron. Phyco-synthesized iron nanoparticles were tested for their efficiency in reducing Cr(VI), a toxic environmental pollutant. The results showed that nanoiron reduced 92 % of 4 mg L−1 Cr(VI) to Cr(III) instantaneously, while bulk iron reduced only 25 %. Thus, iron nanoparticles with high reactivity, greater stability and environmentally benign and economically viable properties can be synthesized using phyco-nanofactories like Chlorococcum sp. MM11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Syed A, Moeez S, Kumar A (2012) Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett 79:116–118

    Article  Google Scholar 

  • Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloid Surf B 71:113–118

    Article  CAS  Google Scholar 

  • Brayner R, Coradin T, Beaunier P, Grenèche JM, Djediat C, Yéprémian C, Couté A, Fiévet F (2012) Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloid Surf B 93:20–23

    Article  CAS  Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon. J Appl Phycol 21:145–152

    Article  CAS  Google Scholar 

  • Eroglu E, Chen X, Bradshaw M, Agarwal V, Zou J, Stewart SG, Duan X, Lamb RN, Smith SM, Raston CL, Iyer SK (2013) Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Adv 3:1009–1012

    Article  CAS  Google Scholar 

  • Ghashghaei S, Emtiazi G (2013) Production of hydroxyapatite nanoparticles using tricalcium-phosphate by Alkanindiges illinoisensis. J Nanomater Mol Nanotechnol 2:5

    Article  Google Scholar 

  • Gopinath V, Ali MD, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloid Surf B 96:69–74

    Article  CAS  Google Scholar 

  • Han X, Wong YS, Wong MH, Tam NFY (2007) Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater 146:65–72

    Article  CAS  PubMed  Google Scholar 

  • Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677

    Article  CAS  Google Scholar 

  • Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett 65:1014–1017

    Article  CAS  Google Scholar 

  • Kadu BS, Sathe YD, Ingle AB, Chikate RC, Patil KR, Rode CV (2011) Efficiency and recycling capability of montmorillonite supported Fe–Ni bimetallic nanocomposites towards hexavalent chromium remediation. Appl Catal B Environ 104:407–414

    Article  CAS  Google Scholar 

  • Kebede A, Singh AK, Rai PK, Giri NK, Rai AK, Watal G, Gholap AV (2013) Controlled synthesis, characterization, and application of iron oxide nanoparticles for oral delivery of insulin. Lasers Med Sci 28:579–587

    Article  PubMed  Google Scholar 

  • Korbekandi H, Iravani S (2013) Biological synthesis of nanoparticles using algae. Berforts Information Press Limited, UK, 53 pp

    Book  Google Scholar 

  • Kuyucak N, Volesky B (1989) The mechanism of cobalt biosorption. Biotechnol Bioeng 33:823–831

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Han J, Choi H, Hur HG (2007) Effects of temperature and dissolved oxygen on Se(IV) removal and Se(0) precipitation by Shewanella sp. HN-41. Chemosphere 68:1898–1905

    Article  CAS  PubMed  Google Scholar 

  • Madhavi V, Prasad T, Reddy AVB, Reddy RB, Madhavi G (2013) Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochim Acta A 116:17–25

    Article  CAS  Google Scholar 

  • Mazumdar H, Haloi N (2011) A study on biosynthesis of iron nanoparticles by Pleurotus sp. J Microbiol Biotech Res 1:39–49

    CAS  Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao A (1986) Growth response of four species of soil algae to monocrotophos and quinalphos. Environ Pollut A 42:15–22

    Article  CAS  Google Scholar 

  • Mohan Kumar K, Mandal BK, Kumar SK, Reddy SP, Sreedhar B (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta A 102:128–133

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanoparticle Res 10:507–517

    Article  CAS  Google Scholar 

  • Nadagouda MN, Castle AB, Murdock RC, Hussain SM, Varma RS (2010) In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem 12:114–122

    Article  CAS  Google Scholar 

  • Nethaji S, Sivasamy A, Mandal A (2013) Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI). Bioresour Technol 134:94–100

    Article  CAS  PubMed  Google Scholar 

  • Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous Sorghum bran extracts. Langmuir 27:264–271

    Article  CAS  PubMed  Google Scholar 

  • Parial D, Pal R (2014) Biosynthesis of monodisperse gold nanoparticles by green alga Rhizoclonium and associated biochemical changes. J Appl Phycol. doi:10.1007/s10811-014-0355-x

    Google Scholar 

  • Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R (2012) Gold nanorod production by cyanobacteria—a green chemistry approach. J Appl Phycol 24:55–60

    Article  CAS  Google Scholar 

  • Prasad TN, Kambala VSR, Naidu R (2013) Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J Appl Phycol 25:177–182

    Article  CAS  Google Scholar 

  • Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath S, Venkataraman A (2009) Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. Nanobiotechnology 5:34–41

    Article  CAS  Google Scholar 

  • Satapathy S, Shukla SP, Sandeep KP, Singh AR, Sharma N (2014) Evaluation of the performance of an algal bioreactor for silver nanoparticle production. J Appl Phycol. doi:10.1007/s10811-014-0311-9

    Google Scholar 

  • Shahwan T, Sirriah AS, Nairat M, Boyac IE, Eroglu A, Scott T, Hallam K (2011) Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172:258–266

    Article  CAS  Google Scholar 

  • Shakibaie M, Forootanfar H, Mollazadeh‐Moghaddam K, Bagherzadeh Z, Nafissi‐Varcheh N, Shahverdi AR, Faramarzi MA (2010) Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 57:71–75

    Article  CAS  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Pandey S, Oza G, Vishwanathan M (2012) Biosynthesis of highly stable gold nanoparticles using Citrus limone. Ann Biol Res 3:2378–2382

    Google Scholar 

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surface B 57:97–101

    Article  CAS  Google Scholar 

  • Sinha A, Khare SK (2011) Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresour Technol 102:4281–4284

    Article  CAS  PubMed  Google Scholar 

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol 6:257–262

    Article  CAS  Google Scholar 

  • Wang Q, Qian H, Yang Y, Zhang Z, Naman C, Xu X (2010) Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. J Contam Hydrol 114:35–42

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Kong P, Liu H (2012) Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol 103:273–278

    Article  CAS  PubMed  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanoparticle Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhao D, Xu Y (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The VS acknowledge Endeavour Awards and CRC-CARE for providing Scholarship, University of South Australia for the research facilities and University of Adelaide for Transmission Electron Microscope analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidhyasri Subramaniyam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramaniyam, V., Subashchandrabose, S.R., Thavamani, P. et al. Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. J Appl Phycol 27, 1861–1869 (2015). https://doi.org/10.1007/s10811-014-0492-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0492-2

Keywords

Navigation