Skip to main content

Advertisement

Log in

Now you see it, now you don’t: differences in hydrocarbon production in the diatom Phaeodactylum tricornutum due to growth temperature

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Current biofuel prospects face many hurdles to becoming mass produced, such as ethanol which is lower in energy content and incompatible with the petroleum-based fuel infrastructure we live in. Consequently, the search is on for an organism that either produces naturally or can be engineered to produce a fuel source that is both comparable in energy content and compatible to the current petroleum-based infrastructure. The pennate diatom Phaeodactylum tricornutum has long been a model species for studies of diatom growth, biochemistry, and lipid accumulation (e.g., triglycerides). In this study, we have used gas chromatography/mass spectrometry (GC/MS) to examine the hydrocarbons produced by P. tricornutum at 20 and 30 °C. P. tricornutum did indeed produce hydrocarbons similar to those found in petroleum-based fuels, namely octane (C8), undecane (C11), nonadecane (C19), and heneicosane (C21) at 20 °C. At 30 °C, however, the alkanes produced were instead heptadecane (C17), octadecane (C18), nonadecane (C19), and eicosane (C20). We also observed three alkenes—heptadecene (C17:1), octadecene (C18:1), and nonadecene (C19:1)—which were not present at the lower temperature. If having organisms such as P. tricornutum or other microalgae produce fuel products is the direct goal, then growth temperature may very well be an important factor to consider.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allard WG, Belt ST, Massé G, Naumann R, Robert JM, Rowland SJ (2001) Tetra-unsaturated sesterterpenoids (Haslenes) from Haslea ostrearia and related species. Phytochemistry 56:795–800

    Article  CAS  PubMed  Google Scholar 

  • Apt KE, Grossman AR, Kroth-Pancic PG (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579

    CAS  PubMed  Google Scholar 

  • Belt ST, Massé G, Allard WG, Robert JM, Rowland SJ (2001) Identification of a C25 highly branched isoprenoid triene in the freshwater diatom Navicula sclesvicensis. Org Geochem 32:1169–1172

    Article  CAS  Google Scholar 

  • Belt ST, Massé G, Rowland SJ, Rohmer M (2006) Highly branched isoprenoid alcohols and epoxides in the diatom Haslea ostrearia Simonsen. Org Geochem 37:133–145

    Article  CAS  Google Scholar 

  • Blatti JL, Michaud J, Burkart MD (2013) Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr Opin Chem Biol 17:496–505

    Article  CAS  PubMed  Google Scholar 

  • Blumer M, Guillard RRL, Chase T (1971) Mar Biol 8:183–189

    Article  CAS  Google Scholar 

  • Bojko M, Brzostowska K, Kuczyńska P, Latowski D, Ol-chawa-Pajor M, Krzeszowiec W, Waloszek A, Strzałka K (2013) Temperature effect on growth, and selected parameters of Phaeodactylum tricornutum in batch cultures. Acta Biochim Pol 60:861–864

    CAS  PubMed  Google Scholar 

  • Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:240–244

    Article  Google Scholar 

  • Brown TA, Belt ST, Cabedo-Sanz P (2014) Idenfitication of a novel di-unsaturated C25 highly branched isoprenoid in the marine tube-dwelling diatom Berkeleya rutilans. Environ Chem Lett. doi:10.1007/s10311-014-0472-4

    Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574

    Article  CAS  PubMed  Google Scholar 

  • Dennis MW, Kollatukudy PE (1991) Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus braunii. Arch Biochem Biophys 287:268–275

    Article  CAS  PubMed  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Article  CAS  PubMed  Google Scholar 

  • Dodson VJ, Mouget JL, Dahmen JL, Leblond JD (2014) The long and short of it: temperature-dependent modifications of fatty acid chain length and unsaturation in the galactolipid profiles of the diatoms Haslea ostrearia and Phaeodactylum tricornutum. Hydrobiologia 727:95–107

    Article  CAS  Google Scholar 

  • Domergue F, Lerchl J, Zähringer U, Heinz E (2002) Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113

    Article  CAS  PubMed  Google Scholar 

  • Domergue F, Spiekermann P, Lerchl J, Beckmann C, Kilian O, Kroth PG, Boland W, Zähringer U, Heinz E (2003) New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Δ12-fatty acid desaturases. Plant Physiol 131:1648–1660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dörmann P, Benning C (2002) Galactolipids rule in seed plants. Trends Plant Sci 7:112–118

    Article  PubMed  Google Scholar 

  • Gong Y, Jiang M (2011) Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnol Lett 33:1268–1284

    Google Scholar 

  • Grossi V, Beker B, Geenevasen JAJ, Schouten S, Raphel D, Fontain MF, Sinninghe Damsté JS (2004) C25 highly branched isoprenoid alkenes from the marine benthic diatom Pleurosigma strigosum. Phytochemistry 65:3049–3055

    Article  CAS  PubMed  Google Scholar 

  • Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

  • Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 23:193–205

    Article  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Lancelot C, Mathot S (1985) Biochemical fractionation of primary production by phytoplankton in Belgian coastal waters during short- and long-term incubations with 14C-bicarbonate. Mar Biol 86:219–226

    Article  CAS  Google Scholar 

  • Leblond JD, Chapman PJ (2000) Lipid class distribution of highly unsaturated long-chain fatty acids in marine dinoflagellates. J Phycol 36:1103–1108

    Article  CAS  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuel production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563

    Article  CAS  PubMed  Google Scholar 

  • Massé G, Belt ST, Allard WG, Lewis CA, Wakeham SG, Rowland SJ (2004) Occurrence of novel monocyclic alkenes in diatoms from marine particulate matter and sediments. Org Geochem 35:813–822

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • McKay WA, Turner MF, Jones BMR, Halliwell CM (1996) Emission of hydrocarbons from marine phytoplankton—some results from controlled laboratory experiments. Atmos Environ 30:2583–2935

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Battacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  CAS  PubMed  Google Scholar 

  • Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks, and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697

    Article  PubMed Central  PubMed  Google Scholar 

  • Parrish CC, Wangersky PJ (1987) Particulate and dissolved lipid classes in cultures of Phaeodactylum tricornutum grown in cage culture turbidostats with a range of nitrogen supply rates. Mar Ecol 35:119–128

    Article  CAS  Google Scholar 

  • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for advanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramachandra TV, Mahapatra DM, Karthick B, Gordon R (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48:8769–8788

    Article  CAS  Google Scholar 

  • Rowland SJ, Robson JN (1990) The widespread occurrence of highly branched acyclic C20, C25, and C30 in recent sediments and biota—a review. Mar Environ Res 30:191–216

    Article  CAS  Google Scholar 

  • Rowland SJ, Belt ST, Wraige EJ, Massé G, Roussakis C, Robert JM (2001) Effects of temperature on polyunsaturation in cytostatic lipids of Haslea ostrearia. Phytochemistry 56:597–602

    Article  CAS  PubMed  Google Scholar 

  • Rushforth SR, Johansen JR, Sorensen DL (1988) Occurrence of Phaeodactylum tricornutum in the Great Salt Lake, Utah, USA. Great Basin Nat 48:324–326

    Google Scholar 

  • Seckbach J, Kociolek JP (2011) Diatoms: general introduction. In: Seckbach J, Kociolek JP (eds) The Diatom World. Springer, Dordrecht, pp xi–xii

    Chapter  Google Scholar 

  • Sinninghe Damsté JS, Schouten S, Rijpstra WIC, Hopmans EC, Peletier H, Gieskes WWC, Geenevasen JAJ (2000) Novel polyunsaturated n-alkenes in the marine diatom Rhizosolenia setigera. Eur J Biochem 267:5727–5732

    Article  Google Scholar 

  • Sinninghe Damsté JS, Muyzer G, Abbas B et al (2004) The rise of the rhizosolenid diatoms. Science 304:584–587

    Article  Google Scholar 

  • Tan X, Yao L, Gao Q, Wang W, Qi F, Lu X (2011) Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metab Eng 13:169–176

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela J, Mazurie A, Carlson RP, Gerlach R, Cooksey KE, Peyton BM, Fields MW (2012) Potential role for multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volkman JK, Barrett SM, Dunstan GA (1994) C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Org Geochem 21:407–414

    Article  CAS  Google Scholar 

  • Werner D (1977) The biology of diatoms. University of California Press, Oakland

    Google Scholar 

  • Yongmanitchai W, Ward OP (1993) Positional distribution of fatty acids, and molecular species of polar lipids, in the diatom Phaeodactylum tricornutum. J Gen Microbiol 139:465–472

    Article  CAS  PubMed  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36:379–386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Leblond.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodson, V.J., Leblond, J.D. Now you see it, now you don’t: differences in hydrocarbon production in the diatom Phaeodactylum tricornutum due to growth temperature. J Appl Phycol 27, 1463–1472 (2015). https://doi.org/10.1007/s10811-014-0464-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0464-6

Keywords

Navigation