Skip to main content
Log in

Dependency of the fatty acid composition of Euglena gracilis on growth phase and culture conditions

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Usually, the fatty acid (FA) composition of lipids from microalgae is determined using samples taken at a single time point only, often without considering the medium composition and cultivation conditions. Therefore, the results only represent the FA composition of cells in a certain growth phase. Furthermore, they may misrepresent the capability of the organism to produce certain FA or lipid mixtures. In this study, 22 FA were analysed quantitatively during the cultivation of Euglena gracilis under different cultivation modes and conditions. For cell growth, various media compositions for heterotrophic and photoheterotrophic conditions were used. Results of extensive FA analysis allowed the determination of appropriate cultivation conditions and durations for yielding lipid mixtures with optimal composition, e.g. for the production of biodiesel or functional food. Drastic differences in the ratio between n3- and n6-polyunsaturated fatty acid (PUFA) ranging from 0.04 to 1.81 were detected. This effect was strongly influenced by the cultivation mode. In addition, media with higher nitrogen concentration resulted in a higher n3/n6-PUFA-ratio as well as improved specific growth rates for all analysed combinations of glucose and nitrogen concentrations. Furthermore, it was demonstrated that the inexpensive proteose peptone medium is ideal for lipid production by E. gracilis. This work provides valuable tools to optimise yield, productivity and n3/n6-PUFA ratio concerning the cultivation of E. gracilis as well as potentially other microalgae in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackman R, Sipos J (1964) Application of specific response factors in the gas chromatographic analysis of methyl esters of fatty acids with flame ionization detectors. J Am Oil Chem Soc 41:377–378

    Article  CAS  Google Scholar 

  • Aladetohun A, Clarke A, Hart G, Pigeon A, Pasilla A, Ritter J, Shin DB, Verdugo D, Verdugo J, Zeng J (2006) A preliminary study into the feasibility of creating biodiesel from algae. University of Michigan, Ann Arbour

    Google Scholar 

  • Anderson GJ, Connor WE, Corliss JD (1990) Docosahexaenoic acid is the preferred dietary n-3 fatty acid for the development of the brain and retina. Pediatr Res 27:89–97

    Article  CAS  PubMed  Google Scholar 

  • Barsanti L, Bastianini A, Passarelli V, Tredici MR, Gualtieri P (2000) Fatty acid content in wild type and WZSL mutant of Euglena gracilis—effects of carbon source and growth conditions. J Appl Phycol 12:515–520

    Article  CAS  Google Scholar 

  • Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P (2011) Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Nat Prod Rep 28:457–466

    Article  CAS  PubMed  Google Scholar 

  • Bigogno C, Khozin-Goldberg I, Boussiba S, Vonshak A, Cohen Z (2002) Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry 60:497–503

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1988) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 257–287

    Google Scholar 

  • Briand J, Calvayrac R (1980) Paramylon synthesis in heterotrophic and photoheterotrophic Euglena (Euglenophyceae). J Phycol 16:234–239

    Article  CAS  Google Scholar 

  • Buetow DE (1989) The biology of Euglena, 4th edn. Academic, San Diego

    Google Scholar 

  • Buetow DE (2011) Euglena. Encyclopedia of Life Scicience. John Wiley & Sons, Chichester, pp 1–5

    Google Scholar 

  • Chen F, Johns MR (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838

    Article  CAS  PubMed  Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1987) Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 26:2255–2258

    Article  CAS  Google Scholar 

  • Coleman LW, Rosen BH, Schwartzbach SD (1988) Environmental control of carbohydrate and lipid synthesis in Euglena. Plant Cell Physiol 29:423–432

    CAS  Google Scholar 

  • Conda Laboratorios (2014) Proteose Peptone CAT No: 1609. http://www.condalab.com/pdf/1609.pdf. Accessed 04 August 2014

  • Connor WE (2000) Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71:171S–175S

    CAS  PubMed  Google Scholar 

  • Cook JR, Cook B (1962) Effect of nutrients on the variation of individual generation times. Exp Cell Res 28:524–530

    Article  CAS  PubMed  Google Scholar 

  • Culture Collection of Algae and Protozoa (2014) Proteose Peptone Medium. http://www.ccap.ac.uk/media/documents/PP.pdf. Accessed 04 August 2014

  • Dunstan G, Volkman J, Barrett S, Garland C (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J Appl Phycol 5:71–83

    Article  CAS  Google Scholar 

  • Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105–116

    Article  CAS  Google Scholar 

  • Fraser TCM, Qi B, Elhussein S, Chatrattanakunchai S, Stobart AK, Lazarus CM (2004) Expression of the Isochrysis C18-Δ9 polyunsaturated fatty acid specific elongase component alters Arabidopsis glycerolipid profiles. Plant Physiol 135:859–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • German Federal Government (2012) Biorefineries Roadmap http://www.biotechnologie.de/BIO/Redaktion/PDF/en/2012-biorefineries-roadmap,property=pdf,bereich=bio,sprache=en,rwb=true.pdf

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Harris R, Kirk J (1969) Control of chloroplast formation in Euglena gracilis. Antagonism between carbon and nitrogen sources. Biochem J 113:195–205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/ mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995

    Article  CAS  PubMed  Google Scholar 

  • Herrero M, Cifuentes A, Ibanez E (2006) Sub-and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: a review. Food Chem 98:136–148

    Article  CAS  Google Scholar 

  • Hugly S, Somerville C (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99:197–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hulanicka D, Erwin J, Bloch K (1964) Lipid metabolism of Euglena. J Biol Chem 239:2778–2787

    CAS  PubMed  Google Scholar 

  • Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137:855–859

    CAS  PubMed  Google Scholar 

  • Jan DC, Jones SJ, Emery AN, Al-Rubeai M (1994) Peptone, a low-cost growth-promoting nutrient for intensive animal cell culture. Cytotechnology 16:17–26

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Du J, Fang H, Zhao G, Tian X (2013) Inhibition of freshwater algal species by co-culture with two fungi. Mater Sci Eng 33:2451–2454

    Article  CAS  Google Scholar 

  • Jones C, Cook J (1978) Culture pH, CO2 tension, and cell division in Euglena gracilis Z. J Cell Physiol 96:253–260

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364

    Article  CAS  Google Scholar 

  • Knothe G (2013) Production and properties of biodiesel from algal oils. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 207–221

    Chapter  Google Scholar 

  • Koll M, Brandt P, Wiessner W (1980) Hemmung der lichtabhängigen Chloroplastenentwicklung etiolierter Euglena gracilis durch Glucose. Protoplasma 105:121–128

    Article  CAS  Google Scholar 

  • Krajcovic J, Ebringer L, Polonyi J (1989) Quinolones and coumarins eliminate chloroplasts from Euglena gracilis. Antimicrob Agents Chemother 33:1883–1889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kusmic C, Barsacchi R, Barsanti L, Gualtieri P, Passarelli V, Clinica F, Savi V (1999) Euglena gracilis as source of the antioxidant vitamin E. Effects of culture conditions in the wild strain and in the natural mutant WZSL. J Appl Phycol 10:555–559

    Article  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  PubMed  Google Scholar 

  • Maag H (1984) Fatty acid derivatives: important surfactants for household, cosmetic and industrial purposes. J Am Oil Chem Soc 61:259–267

    Article  CAS  Google Scholar 

  • Mahapatra D, Chanakya H, Ramachandra T (2013) Euglena sp. as a suitable source of lipids for potential use as biofuel and sustainable wastewater treatment. J Appl Phycol 25:855–865

    Article  CAS  Google Scholar 

  • Mansour MP, Frampton DMF, Nichols PD, Volkman JK, Blackburn SI (2005) Lipid and fatty acid yield of nine stationary-phase microalgae: applications and unusual C24-C28 polyunsaturated fatty acids. J Appl Phycol 17:287–300

    Article  CAS  Google Scholar 

  • McCormick RL, Graboski MS, Alleman TL, Herring AM, Tyson KS (2001) Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ Sci Technol 35:1742–1747

    Article  CAS  PubMed  Google Scholar 

  • Mendiola JA, Garcia-Martinez D, Ruperez FJ, Martin-Alvarez PJ, Reglero G, Cifuentes A, Barbas C, Ibanez E, Senorans FJ (2008) Enrichment of vitamin E from Spirulina platensis microalga by SFE. J Supercrit Fluids 43:484–489

    Article  CAS  Google Scholar 

  • Mongrand S, Bessoule J, Cabantous F, Cassagne C (1998) The C16:3\C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49:1049–1064

    Article  CAS  Google Scholar 

  • Nakamura S (1999) Application of sucrose fatty acid esters as food emulsifiers. In: Karsa DR (ed) Industrial Applications of Surfactants IV. Elsevier, Amsterdam, pp 73–87

    Chapter  Google Scholar 

  • Nicolas P, Freyssinet G, Nigon V (1980) Effect of light on glucose utilization by Euglena gracilis. Plant Physiol 65:631–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oda Y, Miyatake K, Kitaoka S (1979) Inability of Euglena gracilis Z to utilize nitrate, nitrite and urea as the nitrogen sources. Bull Univ Osaka Pref 31:43–48

    CAS  Google Scholar 

  • Oda Y, Nakano Y, Kitaoka S (1982) Utilization and toxicity of exogenous amino acids in Euglena gracilis. J Gen Microbiol 128:853–858

    CAS  Google Scholar 

  • Ogbonna JC, Tomiyamal S, Tanaka H (1998) Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J Appl Phycol 10:67–74

    Article  CAS  Google Scholar 

  • Ogbonna JC, Ichige E, Tanaka H (2002) Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl Microbiol Biotechnol 58:532–538

    Article  CAS  PubMed  Google Scholar 

  • Olaveson MM, Nalewajko C (2000) Effects of acidity on the growth of two Euglena species. Hydrobiologia 433:39–56

    Article  CAS  Google Scholar 

  • Piorreck M, Baasch KH, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216

    Article  CAS  Google Scholar 

  • Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  • Regnault A, Chervin D, Chammai A, Piton F, Calvayrac R, Mazliak P (1995) Lipid composition of Euglena gracilis in relation to carbon-nitrogen balance. Phytochemistry 40:725–733

    Article  CAS  Google Scholar 

  • Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109:668–679

    Article  CAS  PubMed  Google Scholar 

  • Rochetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, Rios des Molina M (2006) Effect of chromium on the fatty acid composition of two strains of Euglena gracilis. Environ Pollut 141:353–358

    Article  Google Scholar 

  • Rodríguez-Zavala JS, Ortiz-Cruz MA, Mendoza-Hernández G, Moreno-Sánchez R (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J Appl Microbiol 109:2160–2172

    Article  PubMed  Google Scholar 

  • Rosenberg A (1967) Euglena gracilis: a novel lipid energy reserve and arachidonic acid enrichment during fasting. Science 157:1189–1191

    Article  CAS  PubMed  Google Scholar 

  • Santek B, Felski M, Friehs K, Lotz M, Flaschel E (2009) Production of paramylon, a beta-1,3-glucan, by heterotrophic cultivation of Euglena gracilis on a synthetic medium. Eng Life Sci 1:23–28

    Article  Google Scholar 

  • Santek B, Friehs K, Lotz M, Flaschel E (2012) Production of paramylon, a β-1,3-glucan, by heterotrophic growth of Euglena gracilis on potato liquor in fed-batch and repeated-batch mode of cultivation. Eng Life Sci 12:89–94

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from algae. National Renewable Energy Laboratory, Golden, Colorado. NREL/TP-580-24190 pp 1-328

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  PubMed  Google Scholar 

  • Sijtsma L, de Swaaf ME (2004) Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64:146–153

    Article  CAS  PubMed  Google Scholar 

  • Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233:674–688

    Article  CAS  Google Scholar 

  • Smedes F (1999) Determination of total lipid using non-chlorinated solvents. Analyst 124:1711–1718

    Article  CAS  Google Scholar 

  • Spoehr H, Milner H (1949) The chemical composition of Chlorella: effect of environmental conditions. Plant Physiol 24:120–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugiyama A, Hata S, Suzuki K, Yoshida E, Nakano R, Arashida R, Asayama Y, Yabuta Y, Takeuchi T (2010) Oral administration of paramylon, a β-1, 3-D-glucan isolated from Euglena gracilis Z inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. J Vet Med Sci 72:755–763

    Article  CAS  PubMed  Google Scholar 

  • Sushchik N, Kalacheva G, Zhila N, Gladyshev M, Volova T (2003) A temperature dependence of the intra-and extracellular fatty-acid composition of green algae and cyanobacterium. Russ J Plant Physiol 50:374–380

    Article  CAS  Google Scholar 

  • Takeyama H, Kanamaru A, Yoshino Y, Kakuta H, Kawamura Y, Matsunaga T (1997) Production of antioxidant vitamins, β-carotene, vitamin C, and vitamin E, by two-step culture of Euglena gracilis Z. Biotechnol Bioeng 53:185–190

    Article  CAS  PubMed  Google Scholar 

  • Tani Y, Osuka S (1989) α-Tocopherol production by an analog-resistant strain of Euglena gracilis Z. Agric Biol Chem 53:2313–2318

    Article  CAS  Google Scholar 

  • Tani Y, Tsumura H (1989) Screening for tocopherol-producing microorganisms and α-tocopherol production by Euglena gracilis Z. Agric Biol Chem 53:305–312

    Article  CAS  Google Scholar 

  • Teerawanichpan P, Qiu X (2010) Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Lipids 45:263–273

    Article  CAS  PubMed  Google Scholar 

  • Tonon T, Harvey D, Larson TR, Graham IA (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24

    Article  CAS  PubMed  Google Scholar 

  • Tucci S, Vacula R, Krajcovic J, Proksch P, Martin W (2010) Variability of wax ester fermentation in natural and bleached Euglena gracilis strains in response to oxygen and the elongase inhibitor flufenacet. J Eukaryot Microbiol 57:63–69

    Article  CAS  PubMed  Google Scholar 

  • Ward OP, Singh A (2005) Omega-3/6 fatty acids: alternative sources of production. Process Biochem 40:3627–3652

    Article  CAS  Google Scholar 

  • Xu Z, Harvey K, Pavlina T, Dutot G, Zaloga G, Siddiqui R (2010) An improved method for determining medium- and long-chain FAMEs using gas chromatography. Lipids 45:199–208

    Article  CAS  PubMed  Google Scholar 

  • Yamane Y, Utsunomiya T, Watanabe M, Sasaki K (2001) Biomass production in mixotrophic culture of Euglena gracilis under acidic condition and its growth energetics. Biotechnol Lett 23:1223–1228

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Egyptian Research Fund (Project-ID: EGY 08/017) of the International Bureau of the German Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Cholewa.

Additional information

Jan-Philipp Schwarzhans and Dominik Cholewa are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwarzhans, JP., Cholewa, D., Grimm, P. et al. Dependency of the fatty acid composition of Euglena gracilis on growth phase and culture conditions. J Appl Phycol 27, 1389–1399 (2015). https://doi.org/10.1007/s10811-014-0458-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0458-4

Keywords

Navigation