Skip to main content

Advertisement

Log in

Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Proximate, amino acid and elemental composition, total phenolic content (TPC), and in vitro protein digestibility (IVPD) of microalgal biomass were determined. Microalgae contained low to moderate ash (5–17 %), moderate to high carbohydrate (18–46 %), crude protein (18–46 %), high crude lipid (12–48 %), and energy (19–27 MJ kg−1). Characteristic of microalgae, non-essential amino acids (AAs), aspartic and glutamic acids, were predominant (20–30 % of protein; 8–12 % of dry weight). Microalgae had favorable essential AA profiles with high essential amino acid (EAA) indices (0.9–1.2). Expressed as g EAA 100 g protein−1, Porphyridium aerugineum was rich in leucine (11.9), lysine (8.0), arginine (8.6), and tryptophan (3.3); Nannochloropsis granulata (A) in leucine (11.0), lysine (8.5), and tryptophan (2.8); Tetraselmis chuii and Botryococcus braunii in arginine (9.4 and 20.5, respectively); and Phaeodactylum tricornutum in lysine (6.4) and tryptophan (2.6). Mineral compositions (%) were calcium (0.1–3.0), magnesium (0.3–0.7), phosphorous (0.7–1.5), potassium (0.7–2.4), sodium (0.8–2.7), and sulfur (0.4–1.4), and trace element compositions (mg kg−1) were copper (18–102), iron (1,395–11,101), manganese (45–454), selenium (0–0.5), and zinc (28–64). Microalgae contained low TPC (6–13 mg gallic acid equivalents (GAE) g−1 DW), except T. chuii (20 mg GAE g−1 DW). IVPD was high (>90 %) for B. braunii (A), P. aerugineum, and lipid-extracted N. granulata (B); mid-range (80–89 %) for P. tricornutum, N. granulata (A), B. braunii (B), Neochloris oleoabundans, T. chuii, and whole N. granulata (B); and lower (<80 %) for Acutodesmus dimorphus. Microalgal species P. tricornutum, B. braunii, N. granulata, and T. chuii had high protein (40–52 %), IVPD (82–97 %), and digestible protein (35–50 %), comparable to plant proteins used in animal feeds and aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed F, Li Y, Schenk PM (2012) Algal biorefinery: sustainable production of biofuels and aquaculture feed? In: Gordon R, Seckbach J (eds) The science of algal fuels—phycology, geology, biophotonics, genomics and nanotechnology. Springer, NY, pp 23–41

    Google Scholar 

  • Anderson RA, Berges JA, Harrison PJ, Watanabe MM (2005) Recipes for freshwater and seawater media. In: Anderson RA (ed) Algal culturing techniques. Elsevier, Burlington, p 507

    Google Scholar 

  • Armstrong SM, Staples LS, Bauder AG, Craigie JS (2002) Photobioreactor, Canadian Patent CA2394518

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  CAS  PubMed  Google Scholar 

  • Becker EW (2013) Microalgae for human and animal nutrition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley-Blackwell, Oxford, pp 461–503

    Chapter  Google Scholar 

  • Bobin-Dubigeon C, Hoebler C, Lognone V, Dagorn-Scaviner C, Mabeau S, Barry JL, Lahaye M (1997) Chemical composition, physico-chemical properties, enzymatic inhibition and fermentative characteristics of dietary fibres from edible seaweeds. Sci Aliments 17:619–639

    CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialization. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Brown MR, Jeffrey SW (1992) Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J Exp Mar Biol Ecol 161:91–113

    Article  CAS  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    Article  CAS  Google Scholar 

  • Brune D, Lundquist T, Benemann J (2009) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J Env Engineer 135:1136–1144

    Article  CAS  Google Scholar 

  • Campanella L, Crescentini G, Avino P, Moauro A (1998) Determination of macrominerals and trace elements in the alga Spirulina platensis. Analusis 26:210–214

    Article  CAS  Google Scholar 

  • Chacón-Lee TL, González-Marino GE (2010) Microalgae for “Healthy” foods—possibilities and challenges. Comp Rev Food Sci Food Safety 9:655–675

    Article  Google Scholar 

  • Chronakis IS (2000) Biosolar proteins from aquatic algae. Dev Food Sci 41:39–75

    Article  CAS  Google Scholar 

  • Cohen Z, Norman HA, Heimer YM (1995) Microalgae as a source of omega-3 fatty acids. World Rev Nutr Diet 77:1–31

    Article  CAS  PubMed  Google Scholar 

  • Custódio L, Justo T, Silvestre L, Barradas A, Duarte CV, Pereira H, Barreira L, Rauter AP, Alberício F, Varela J (2012) Microalgae of different phyla display antioxidant, metal chelating and acetylcholinesterase inhibitory activities. Food Chem 131:134–140

    Article  Google Scholar 

  • de la Fuentes G, Flores A, Molina MR, Almengor L, Bressani R (1977) Some nutritional characteristics of a naturally occurring alga (Microcystis sp.) in a Guatemalan Lake. Appl Environ Microbiol 33:6–9

    Google Scholar 

  • Demirbas A, Demirbas MF (2011) Importance of algae oil as a source of biodiesel. Energy Conver Manag 52:163–170

    Article  Google Scholar 

  • Devi MA, Subbulakshmi G, Devi KM, Venkataraman LV (1981) Studies on the proteins of mass-cultivated, blue-green alga (Spirulina platensis). J Agric Food Chem 29:522–525

    Article  CAS  PubMed  Google Scholar 

  • Duval B, Shetty K, Thomas WH (2000) Phenolic compounds and antioxidant properties in the snow alga Chlamydomonas nivalis after exposure to UV light. J Appl Phycol 11:559–566

    Article  Google Scholar 

  • Environmental Protection Agency (2007) Test methods for evaluating solid waste physical/chemical methods, Methods EPA 6010C and 7471B

  • Fernández-Garcia E, Lérida-Carvajal I, Pérez-Gálvez A (2009) In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutr Res 29:751–760

    Article  PubMed  Google Scholar 

  • Goh SH, Yusoff FM, Loh SP (2010) A comparison of the antioxidant properties and total phenolic content in a diatom, Chaetoceros sp. and a green microalga, Nannochloropsis sp. J Agric Sci 2:123–130

    Google Scholar 

  • Goiris K, Muylaert K, Fraeye I, Foubert I, Brabanter J, Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486

    Article  CAS  Google Scholar 

  • González López CV, Cerón García MC, Acién Fernández FC, Bustos CS, Chisti Y, Fernández Sevilla JM (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresource Technol 101:7587–7591

    Article  Google Scholar 

  • Hajimahmoodi M, Faramarzi M, Mohammadi N, Soltani N, Oveisi M, Nafissi-Varcheh N (2010) Evaluation of antioxidant properties and total phenolic contents of some strains of microalgae. J Appl Phycol 22:43–50

    Article  CAS  Google Scholar 

  • Hedenskog G, Enebo L, Vendlová J, Prokeš B (1969) Investigation of some methods for increasing the digestibility in vitro of microalgae. Biotechnol Bioeng 6:37–51

    Article  Google Scholar 

  • Heffernan N, Smyth TJ, Soler-Villa A, Fitzgerald RJ, Brunton NP (2014) Phenolic content and antioxidant activity of fractions obtained from selected Irish macroalgae species (Laminaria digitata, Fucus serratus, Gracilaria gracilis and Codium fragile). J Appl Phycol. doi:10.1007/s10811-014-0291-9

    Google Scholar 

  • Heinriksen RL, Meredith SC (1984) Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem 136:65–74

    Article  Google Scholar 

  • Hori K, Ueno-Mohri T, Okita T, Ishibashi G (1990) Chemical composition, in vitro digestibility and in vitro available iron of blue green alga, Nostoc commune. Plant Foods Hum Nutr 40:223–229

    Article  CAS  PubMed  Google Scholar 

  • Hsu HW, Vavak DL, Satterlee LD, Miller GA (1977) A multienzyme technique for estimating protein digestibility. J Food Sci 42:1269–1273

    Article  CAS  Google Scholar 

  • Jamroz D, Orda J, Kamel C, Wiliczkiewicz A, Wertelecki T, Skorupinska J (2003) The influence of phytogenic extracts on performance, nutrient digestibility, carcass characteristics, and gut microbial status in broiler chickens. J Anim Feed Sci 12:583–596

    Google Scholar 

  • Janczyk P, Wolf C, Souffrant WB (2005) Evaluation of nutritional value and safety of the green microalgae Chlorella vulgaris treated with novel processing methods. Arch Zootech 8:132–147

    Google Scholar 

  • Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of Northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217

    Article  CAS  Google Scholar 

  • Króliczewska B, Miśta D, Zawadzki W, Wypchlo A, Króliczewski J (2011) Effects of a skullcap root supplement on haematology, serum parameters and antioxidant enzymes in rabbits on a high-cholesterol diet. J Anim Physiol Anim Nutr 95:114–124

    Article  Google Scholar 

  • Laurens LM, Dempster TA, Jones HDT, Wolfrum EJ, Van Wychen S, McAllister JSP, Rencenberger M, Parchert KJ, Gloe LM (2012) Algal biomass constituent analysis: method uncertainties and investigation of the underlying measuring chemistries. Anal Chem 84:1879–1887

    Article  CAS  PubMed  Google Scholar 

  • Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776

    Article  CAS  Google Scholar 

  • Lipinsky ES, Litchfield JH (1974) Single-cell protein in perspective. Food Technol 28:16–24

    CAS  Google Scholar 

  • Lourenço SO, Barbarino E, Lavín PL, Marquez UML, Aidar E (2004) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. Eur J Phycol 39:17–32

    Article  Google Scholar 

  • Mabeau S, Fleurence J (1993) Seaweeds in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4:103–107

    Article  CAS  Google Scholar 

  • MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edible seaweeds. Nutr Rev 65:535–543

    Article  PubMed  Google Scholar 

  • Mariotti F, Tome D, Mirand PP (2008) Converting nitrogen into protein—beyond 6.25 and Jones’ factors. Crit Rev Food Sci Nutr 48:177–184

    Article  CAS  PubMed  Google Scholar 

  • Marrion O, Fleurence J, Schwertz A, Guéant JL, Mamelouk L, Ksouri J, Villaume C (2005) Evaluation of protein in vitro digestibility of Palmaria palmata and Gracilaria verrucosa. J Appl Phycol 17:99–102

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15:513–524

    Article  CAS  Google Scholar 

  • McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA, Sinclair LA (2010) Animal Nutrition, 7th edn. Prentice Hall, New York, 692 p

    Google Scholar 

  • McGinn PJ, Dickinson KE, Bhatti S, Frigon J-C, Guiot SR, O’Leary SJB (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247

    Article  CAS  PubMed  Google Scholar 

  • Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technol 104:342–348

    Article  CAS  Google Scholar 

  • Mišurcova L, Kračmar S, Klejdus B, Vacek J (2010) Nitrogen content, dietary fiber, and digestibility in algal food products. Czech J Food Sci 28:27–35

    Google Scholar 

  • Morris HJ, Almerales A, Carrillo O, Bermúdez RC (2008) Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresource Technol 99:7723–7729

    Article  CAS  Google Scholar 

  • National Research Council (2011) Nutrient requirements of fish and shrimp. National Academy Press, Washington, DC, 376 p

    Google Scholar 

  • National Research Council (1994) Nutrient requirements of poultry. National Academy Press, Washington, DC, 155 p

    Google Scholar 

  • Oser BL (1951) Method for integrating essential amino acid content in the nutritional evaluation of protein. J Am Diet Assoc 27:396–402

    CAS  PubMed  Google Scholar 

  • Palmquist DL, Jenkins TC (2003) Challenges with fats and fatty acid methods. J Anim Sci 81:3250–3254

    CAS  PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Rebolloso-Fuentes MM, Navarro-Pérez A, García-Camacho F, Ramos-Miras JJ, Guil-Guerrero JL (2001) Biomass nutrient profiles of the microalga Nannochloropsis. J Agric Food Chem 49:2966–2972

    Article  CAS  PubMed  Google Scholar 

  • Rupérez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosis. J Agric Food Chem 50:840–845

    Article  PubMed  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In: Abelson JN, Simon MI (eds) Methods in enzymology. Academic, New York, pp 152–178

    Google Scholar 

  • Skjånes K, Rebours C, Lindblad P (2013) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33:172–215

    Article  PubMed Central  PubMed  Google Scholar 

  • Stephens E, Ross II, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nature Biotechnol 28:126–128

    Article  CAS  Google Scholar 

  • Subbulakshmi G, Becker WE, Venkataraman LV (1976) Effect of processing on the nutrient content of the green alga Scenedesmus acutus. Nutr Rep Int 14:581–591

    CAS  Google Scholar 

  • Subhadra B, Grinson G (2011) Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric 91:2–13

    Article  CAS  PubMed  Google Scholar 

  • Sydney EB, Sturm W, Cesar de Carvalho J, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technol 101:5892–5896

    Article  CAS  Google Scholar 

  • Tamiya H (1962) Chemical composition and applicability as food and feed of mass cultured unicellular algae. Final Report no. 1 on Contract NODA 92-557-FEC-33129, U.S. Army Research and Development Group (9852)

  • Van Parys A, Boyen F, Dewulf J, Haesebrouck F, Pasmans F (2010) The use of tannins to control Salmonella typhimurium infection in pigs. Zoonoses Public Health 57:423–428

    Article  PubMed  Google Scholar 

  • Velioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem 46:4113–4117

    Article  CAS  Google Scholar 

  • Venugopal V (2009) Seaweed: nutritional value, bioactive properties, and uses. In: Venugopal V (ed) Marine products for healthcare: functional and bioactive nutraceutical compounds from the ocean. CRC Press, Boca Raton, pp 261–295

    Google Scholar 

  • Volkman JK, Brown MR (2006) Nutritional value of microalgae and applications. In: Subba Rao DV (ed) Algal cultures, analogues of blooms and applications. CABI, pp 407–457

  • White JA, Hart RJ, Fry JC (1986) An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J Clin Lab Auto 8:170–177

    CAS  Google Scholar 

  • Whyte JNC (1987) Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalves. Aquaculture 60:231–241

    Article  CAS  Google Scholar 

  • Wong KH, Cheung PCK (2001) Nutritional evaluation of some subtropical red and green seaweeds. Part II - In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chem 72:11–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Kathryn Dickinson, Margaret MacPherson, Ronald Melanson, and Neil Ross for providing samples, culture performance data, and valuable technical assistance and advice during this study and Dr. Patrick McGinn for reviewing a draft of this manuscript. This work was supported by the National Bioproducts Program (NBP), a collaborative agreement between Agriculture and Agri-Food Canada (AAFC), Natural Resources Canada (NRCan), and the National Research Council of Canada (NRCC). This is NRCC publication no. 55850.

Conflict of Interest

We certify that there is no conflict of interest with any financial organization regarding the material discussed in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Tibbetts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tibbetts, S.M., Milley, J.E. & Lall, S.P. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol 27, 1109–1119 (2015). https://doi.org/10.1007/s10811-014-0428-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0428-x

Keywords

Navigation