Skip to main content
Log in

Evaluation of sodium tripolyphosphate-alginate coating and re-calcifying on the entrapment of microalgae in alginate beads

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Coating with polymers and re-calcifying have been done to retard the liberation of immobilized cells. Considering that sodium tripolyphosphate (TPP) is highly effective for chelating calcium ions, it is possible to postulate that if a layer of TPP is deposited over calcium alginate beads, the strong interaction between TPP ions and calcium may help in improving their cell holding capacity. In this study, we evaluate and compare the efficiency of cell entrapment between beads of alginate-immobilized microalgae Chlorella vulgaris, Acutodesmus (Scenedesmus) obliquus, and Synechococcus elongatus that were re-calcified, with those that were coated with varying ratios of alginate:TPP. Results indicate that re-calcifying and coating do not limit the growth of the species studied. For C. vulgaris and A. obliquus, coating is more efficient for cell entrapment than re-calcifying. In contrast, for S. elongatus, re-calcifying is more effective than coating, suggesting a relationship between the cell size and the efficiency of cell entrapment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar-May B, Sánchez-Saavedra MP (2009) Growth of and removal of nitrogen and phosphorous by the free living and chitosan-immobilized cells of the marine cyanobacterium Synechococcus elongatus. J Appl Phycol 21:353–360

    Article  CAS  Google Scholar 

  • Annan NT, Borza AD, Hansen LT (2008) Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res Int 41:184–193

    Article  CAS  Google Scholar 

  • Brouers M, Dejong H, Shi DJ, Hall DO (1989) Immobilized cells: an appraisal of the methods and applications of cell immobilization techniques. In: Cresswell RC, Rees TAV, Shah N (eds) Algae and cyanobacterial biotechnology. Longman Scientific and Technical Pub, New York, pp 272–290

    Google Scholar 

  • Cabrita MT, Raimundo J, Pereira P, Vale C (2013) Optimizing alginate beads for the immobilisation of Phaeodactylum tricornutum in estuarine waters. Mar Environ Res 87–88:37–43

    Article  PubMed  Google Scholar 

  • Cheetam PSJ, Bluny KW, Bocke C (1979) Physical studies on cell immobilization using calcium alginate gels. Biotechnol Bioeng 21:2155–2168

    Article  Google Scholar 

  • Chen YC (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta. Chlorococcales) for long-term storage and application for water quality control in fish culture. Aquaculture 195:71–80

    Article  Google Scholar 

  • Fierro S, Sánchez-Saavedra MP, Copalcúa C (2008) Nitrate and phosphate removal by chitosan immobilized Scenedesmus. Bioresour Technol 99:1274–1279

    Article  CAS  PubMed  Google Scholar 

  • Flores-Páez LM (2012) Microalgas inmovilizadas con distintos tipos de recubrimiento para su potencial uso en la remoción de nutrientes de efluentes de cultivos acuícolas. Master of Science thesis, Centro de Investigación Científica y de Educación Superior de Ensenada. Ensenada, Baja California, México

  • Guillard RL, Ryther JH (1962) Studies of marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Jerobin J, Sureshkumar RS, Anjali CH, Mukherjee A, Chandrasekaran N (2012) Biodegradable polymer based encpasulation of neem oil nanoemulsion for controlled release of Aza-A. Carbohydr Polym 90:1750–1756

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Estrada MY (2011) Evaluación del crecimiento, composición bioquímica y fotosíntesis de Dunaliella tertiolecta en cultivos con células libres e inmovilizadas para su potencial uso en la remoción de nutrientes de aguas residuales acuícolas. Bachelor of Biological Sciences thesis, Universidad de Occidente, Unidad Guasave. Sinaloa, México

  • Kaya VM, de la Noüe J, Picard G (1995) A comparative study of four systems for tertiary wastewater treatment by Scenedesmus bicellularis: new technology for immobilization. J Appl Phycol 7:85–95

    Article  CAS  Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14:737–743

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1997) Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 18:945–951

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 15:377–390

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra SC, Hsu JT (2000) Immobilization of a-chymotrypsin for use in batch and continuous reactors. J Chem Technol Biotechnol 75:519–525

    Article  CAS  Google Scholar 

  • Moreno-Garrido I (2007) Microalgae immobilization: current techniques and uses. Bioresource Technol 99:3949–3964

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford

    Google Scholar 

  • Pérez-Coutiño MD (2011) Remoción de nutrientes y evaluación de la actividad fotosintética de Chlorella vulgaris inmovilizada con alginato y recubierta con quitosano. Bachelor of Biotechnology Engineer thesis, Universidad Autónoma de Chiapas. Chiapas, México

  • Ramachandran S, Coradin T, Jain PK, Verma SK (2009) Nostoc calcicola immobilized in Silica-coated calcium alginate and silica gel for applications in heavy metal biosorption. Silicon 1:215–223

    Article  CAS  Google Scholar 

  • Ruíz-Güereca D (2014) Coinmovilización de Synechococcus elongatus y Azospirillum brasilense. Bachelor of Bioengineering thesis, Universidad Autónoma de Baja California. Ensenada, Baja California, México

  • Ruíz-Marín A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technol 101:58–64

    Article  Google Scholar 

  • Serp D, Cantana E, Heinzen C, von Stockar MIW (2000) Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng 70:41–53

    Article  CAS  PubMed  Google Scholar 

  • Tarté R (2009) Ingredients in food products: properties, functionality and applications. Springer, New York

    Book  Google Scholar 

  • Vilchez C, Garbayo I, Markvicheva E, Galván F, León R (2001) Studies on the suitability of alginate-entrapped Chlamydomonas reinhardtii cells for sustaining nitrate consumption processes. Bioresource Technol 78:55–61

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Consejo Nacional de Ciencia y Tecnología, CONACyT (Grant No. 130074) and by Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE, project no. 623108). A.B. Castro-Ceseña received a postdoctoral fellowship from CONACyT (Grant No. 130074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. del Pilar Sánchez-Saavedra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Ceseña, A.B., del Pilar Sánchez-Saavedra, M. Evaluation of sodium tripolyphosphate-alginate coating and re-calcifying on the entrapment of microalgae in alginate beads. J Appl Phycol 27, 1205–1212 (2015). https://doi.org/10.1007/s10811-014-0411-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0411-6

Keywords

Navigation