Skip to main content
Log in

Structural and functional stability of regenerated cyanobacteria following immobilization

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Cyanobacterial preservation is important to ensure availability of pure strains for research without repeating the extensive process of isolation and purification. Preservation techniques should be able to conserve various wild-type characteristics of a strain and deter any loss of phenotypic characters that were originally present in the organism. In the present study, immobilization of four different cyanobacterial strains in calcium alginate beads was studied extensively to evaluate the merits of this technique in conserving various characteristics of these strains over a long period of time. Since the immobilized cultures were stored in dehydrated conditions and in dark for a period of 3 years, their viability and retention of assorted characteristics were of interest to credit this method for cyanobacterial preservation. Morphological investigations carried out using SEM provided excellent proof in favor of the technique. In addition, various biochemical analyses showed retention of growth rate, heterocyst frequency, and photosynthetic and respiratory abilities as well as performances of various enzymes of nitrogen metabolism such as nitrogenase, glutamine synthetase, nitrate reductase, and nitrite reductase. An investigation into molecular fingerprints of the organisms using PCR also presented proof of genetic stability in the organisms stored immobilized in calcium alginate beads for 3 years in dark under dehydrated conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acreman J (1994) Algae and cyanobacteria: isolation, culture and long-term maintenance. J Ind Microbiol 13:193–194

    Article  Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  • Araújo AA, Andrade Santana MH (1996) Aerobic immobilized cells in alginate gel particles of variable density. Appl Biochem Biotech 57/58:543–550

  • Arizmendi JM, Serra JL (1990) Purification and some properties of the nitrate reductase from the cyanobacterium Phormidium laminosum. Biochim Biophys Acta 1040:237–244

    Article  CAS  PubMed  Google Scholar 

  • Bentebibel S, Moyano E, Palazon J, Cusido RM, Bonfill M, Eibl R, Pinol MT (2005) Effects of immobilization by entrapment in alginate and scale-up on paclitaxel and baccatin III production in cell suspension cultures of Taxus baccata. Biotechnol Bioeng 89:647–655

    Article  CAS  PubMed  Google Scholar 

  • Bozeman J, Koopman B, Bitton B (1989) Toxicity testing using immobilized algae. Aquat Toxicol 14:345–352

    Article  CAS  Google Scholar 

  • Chen YC (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application in fish culture water quality control. Aquaculture 195:71–80

    Article  Google Scholar 

  • Chen YC (2003) Immobilized Isochrysis galbana (Haptophyta) for long-term storage and applications for feed and water quality control in clam (Meretrix lusoria). J Appl Phycol 15:439–444

    Article  Google Scholar 

  • Choudhary KK (2010) Post-storage viability and metabolic stability of immobilized cyanobacteria. Nova Hedwigia 90:215–226

    Article  Google Scholar 

  • Day JG, Brand JJ (2005) Cryopreservation methods for maintaining cultures. In: Andersen RA (ed) Algal culturing techniques. Academic Press, New York, pp 165–187

    Google Scholar 

  • Day JG, Benson EE, Harding K, Knowles B, Idowu M, Bremner DH et al (2005) Cryopreservation and conservation of microalgae: the development of a pan-European scientific and biotechnological resource (the COBRA project). Cryo Lett 26:231–238

    CAS  Google Scholar 

  • Fernandez-Piñas F, Mateo P, Bonilla I (1995) Cadmium toxicity in Nostoc UAM208: protection by calcium. New Phytol 131:403–407

    Article  Google Scholar 

  • Garbisu C, Hall DO, Serra JL (1993) Removal of phosphate by foam immobilized Phormidium laminosum. J Chem Technol Biotechnol 57:181–189

    Article  CAS  Google Scholar 

  • Gaudin P, Lebeau T, Robert JM (2006) Microalgal cell immobilization for the long-term storage ofthe marine diatom Haslea ostrearia. J Appl Phycol 18:175–184

    Article  Google Scholar 

  • Hertzberg S, Jensen A (1989) Studies of alginate-immobilized marine micro algae. Bot Mar 32:267–273

    Article  CAS  Google Scholar 

  • Jeanfils J, Thomas D (1986) Culture and nitrite uptake in immobilized Scenedesmus obliquus. Appl Microbiol Biotechnol 24:417–422

    Article  CAS  Google Scholar 

  • Joo DS, Cho MG, Lee JS, Park JH, Kwak JK, Han YH, Bucholz R (2001) New strategy for the cultivation of microalgae using microencapsulation. J Microencapsul 18:567–576

    Article  CAS  PubMed  Google Scholar 

  • Khumanthem N, Syiem MB, Singh AK, Rai AN (2007) Isolation and characterization of a Mastigocladus species capable of growth N2- fixation and N-assimilation at elevated temperature. Indian J Microbiol 47:345–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lorenz M, Friedl T, Day JG (2005) Perpetual maintenance of actively metabolizing microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Academic Press, New York, pp 145–156

    Google Scholar 

  • Lowry GH, Rosenbrough J, Farr AL, Randell RJ (1951) Protein measurements with Folin-phenol reagent. J Biol Chem 244:4436–4440

    Google Scholar 

  • Lukavsky J (1988) Long-term preservation of algal strains by immobilization. Arch Protistenkd 135:65–68

    Article  Google Scholar 

  • MacKinney G (1941) Absorption of light by chlorophyll solution. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  PubMed  Google Scholar 

  • Manzano C, Candau P, Gomez-Moreno C, Relimpio AM, Losada M (1976) Ferredoxin dependent photosynthetic reduction of nitrate and nitrite in particles of Anacystis nidulans. Mol Cell Biochem 10:161–169

    Article  CAS  PubMed  Google Scholar 

  • Matunda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainablebiofuel production. Bioresour Technol 102:57–70

    Article  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964

    Article  CAS  PubMed  Google Scholar 

  • Musgrave SC, Kerby NW, Codd GA, Stewart WDP (1982) Sustained ammonia production by immobilized filaments of the nitrogen fixing cyanobacteria Anabaena 27893. Biotechnol Lett 4:647–652

    Article  CAS  Google Scholar 

  • Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides, 2. Academic Press, New York, pp 195–285

    Google Scholar 

  • Patnaik S, Sarkar R, Mitra A (2001) Alginate immobilization of Spirulina platensis for waste water treatment. Indian J Exp Biol 39:824–826

    CAS  PubMed  Google Scholar 

  • Rasmussen U, Svenning MM (1998) Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl Environ Microbiol 64:265–272

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rhodes L, Smith J, Tervit R, Roberts R, Adamson J, Adams S, Decaer M (2006) Cryopreservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae and Rhodophyceae. Cryobiology 52:152–156

    Article  CAS  PubMed  Google Scholar 

  • Rippka R, Dereulles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Article  Google Scholar 

  • Romo S, Pérez-Martínez C (1997) The use of immobilization in alginate beads for long-term storage of Pseudanabaena galeata(Cyanobacteria) in the laboratory. J Phycol 33:1073–1076

    Article  Google Scholar 

  • Sampaio MJAM, Rowell P, Stewart WDP (1979) Purification and some properties of glutamine synthetase from the nitrogen fixing cyanobacterium Anabaena cylindrica and Nostoc sp. J Gen Microbiol 111:181–191

    Article  CAS  Google Scholar 

  • Silva PG, Ferrari SG, Silva HJ (2007) Preservation methods of Tolypothrix tenuis for use as a cyanobacterial fertilizer. J Appl Phycol 19:239–246

    Article  Google Scholar 

  • Smidsrød O, Skjåk-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  PubMed  Google Scholar 

  • Stewart WDP, Fitzgerald GP, Burris RH (1967) In situ studies on nitrogen fixation using acetylene reduction technique. Proc Natl Acad Sci U S A 58:2071–2078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamponnet C, Gudin C, Thomas D (1985) Cytological and physiological behaviour of Euglena gracillis cells entrapped in a calcium alginate gel. Physiol Plant 63:277–283

    Article  CAS  Google Scholar 

  • Tsutsaeva AA, Anańina AE, Balyberdina LM, Stepanyuk LV, Pavlenko NV (2008) Long-term storage of Industrial microbial strains. Microbiology 77:621–624

    Article  CAS  Google Scholar 

  • Willaert R, Baron G (1993) Growth kinetics of gel-immobilized yeast cells studied by on-line microscopy. Appl Microbiol Biotechnol 39:347–352

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Biotechnology, Government of India (F. No. BT/216/NE/TBP/2011) and University Grants Commission for financial assistance under DRS (Department of Biochemistry, North-Eastern Hill University, Shillong).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayashree B. Syiem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syiem, M.B., Bhattacharjee, A. Structural and functional stability of regenerated cyanobacteria following immobilization. J Appl Phycol 27, 743–753 (2015). https://doi.org/10.1007/s10811-014-0382-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0382-7

Keywords

Navigation