Skip to main content
Log in

Tools for microalgal biotechnology: development of an optimized transformation method for an industrially promising microalga—Tetraselmis chuii

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Tetraselmis chuii is a biotechnologically promising green microalga that is commonly used in aquaculture. Development of reliable and easy genetic transformation procedures is essential for the improvement of this microalga. Here, we report the development of a suitable method for the stable genetic transformation of T. chuii via Agrobacterium tumefaciens. Following a statistical experimental design, seven factors were tested for their effect on the transformation efficiency. The effects of temperature, pH, and the interaction between acetosyringone concentration and co-culturing period were statistically significant. These main factors were subsequently optimized to the following values: 27 °C co-culturing temperature, pH 5.0, and 150 μM acetosyringone concentration. Transformation was verified by PCR on different target genes present in the T-DNA as well as by the determination of GUS activity from the reporter gene. Genetic stability of the transformed clones was examined by culturing under non-selective conditions in phleomycin-free medium for 6 months. Transformed clones were stable as indicated by the maintenance of the resistance to phleomycin (PhlR). In summary, an easy and reliable genetic transformation method for T. chuii was developed. The use of A. tumefaciens provides a useful method for the genetic engineering of this biotechnologically promising microalga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anila N, Chandrashekar A, Ravishankar GA, Sarada R (2011) Establishment of Agrobacterium tumefaciens-mediated genetic transformation in Dunaliella bardawil. Eur J Phycol 46:36–44

    Article  CAS  Google Scholar 

  • Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579

    CAS  PubMed  Google Scholar 

  • Cerutti H, Ma X, Msanne J, Repas T (2011) RNA-mediated silencing in algae: biological roles and tools for analysis of gene function. Eukaryot Cell 10:1164–1172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cha T, Chen C, Yee W, Aziz A, Loh S (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84:430–434

    Article  CAS  PubMed  Google Scholar 

  • Cha TS, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J Microbiol Biotechnol 28:1771–1779

    Article  CAS  PubMed  Google Scholar 

  • Cheng R, Ma R, Li K, Rong H, Lin X, Wang Z, Yang S, Ma Y (2012) Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol Res 167:179–186

    Article  CAS  PubMed  Google Scholar 

  • Chileh T, Esteban Garcia B, Alonso DL, Garcia-Maroto F (2010) Characterization of the 11S globulin gene family in the castor plant Ricinus communis L. J Agric Food Chem 58:272–281

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2013) Constraints to commercialization of algal fuels. J Biotechnol 167:201–214

    Article  CAS  PubMed  Google Scholar 

  • Depicker A, Sanders M, Meyer P (2005) Transgene silencing. In: Meyer P (ed) Plant epigenetics. Blackwell, Oxford, pp 1–32

    Chapter  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57–58:223–231

    Article  Google Scholar 

  • Elmayan T, Vaucheret H (1996) Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J 9:787–797

    Article  CAS  Google Scholar 

  • English JJ, Mueller E, Baulcombe DC (1996) Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8:179–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fagard M, Vaucheret H (2000) (Trans)gene silencing in plants: how many mechanisms? Annu Rev Plant Physiol Plant Mol Biol 51:167–194

    Article  CAS  PubMed  Google Scholar 

  • Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol 1:239–251

    Article  CAS  PubMed  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhao X, Tang Y, Wan C, Alam MA, Ho S, Bai F, Chang J (2013) Establishment of an efficient genetic transformation system in Scenedesmus obliquus. J Biotechnol 163:61–68

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan S, Sarada R (2009) Towards genetic improvement of commercially important microalga Haematococcus pluvialis for biotech applications. J Appl Phycol 21:553–558

    Article  CAS  Google Scholar 

  • Kathiresan S, Chandrashekar A, Ravishankar GA, Sarada R (2009) Agrobacterium-mediated transformation in the green alga Haematococcus pluvialis (Chlorophyceae, Volvocales). J Phycol 45:642–649

    Article  CAS  Google Scholar 

  • Klein-Marcuschamer D, Chisti Y, Benemann JR, Lewis D (2013) A matter of detail: assessing the true potential of microalgal biofuels. Biotechnol Bioeng 110:2317–2322

    Article  CAS  PubMed  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    Article  CAS  Google Scholar 

  • Lv H, Qu G, Qi X, Lu L, Tian C, Ma Y (2013) Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101:229–237

    Article  CAS  PubMed  Google Scholar 

  • Mimouni V, Ulmann L, Pasquet V, Mathieu M, Picot L, Bougaran G, Cadoret J, Morant-Manceau A, Schoefs B (2012) The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr Pharm Biotechnol 13:2733–2750

    Article  CAS  PubMed  Google Scholar 

  • Muto M, Fukuda Y, Nemoto M, Yoshino T, Matsunaga T, Tanaka T (2013) Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580-a high triglyceride producer. Mar Biotechnol 15:48–55

    Article  CAS  PubMed  Google Scholar 

  • Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH (1990) Transformation of chloroplast ribosomal RNA genes in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126:875–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Radakovits R, Eduafo PM, Posewitz MC (2011) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 13:89–95

    Article  CAS  PubMed  Google Scholar 

  • Rasala BA, Muto M, Lee PA, Jager M, Cardoso RM, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, Schmidt R (2004) Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16:2561–2572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot (Lond) 79:3–12

    Article  CAS  Google Scholar 

  • ten Lohuis MR, Miller DJ (1998) Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J 13:427–435

    Article  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  • Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J, Mourrain P, Palauqui J, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Béclin C, Fagard M (2001) Post-transcriptional gene silencing in plants. J Cell Sci 114:3083–3091

    CAS  PubMed  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36:379–386

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the EnerGeticAl project funded by the Ministerio de Economía y Competitividad (MINECO, project IPT-2011-0842-920000) in collaboration with ENDESA, TECNALIA, AITEMIN, and Universidad de Almería. Yasmeen Dautor was supported by a pre-doctoral fellowship from the Government of Syria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego López Alonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Úbeda-Mínguez, P., Chileh, T., Dautor, Y. et al. Tools for microalgal biotechnology: development of an optimized transformation method for an industrially promising microalga—Tetraselmis chuii . J Appl Phycol 27, 223–232 (2015). https://doi.org/10.1007/s10811-014-0306-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0306-6

Keywords

Navigation