Skip to main content
Log in

A novel alginate quantification method using high-performance liquid chromatography (HPLC) for pretreatment of Saccharina japonica

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

A new analysis method for alginate quantification in the brown alga, Saccharina japonica, was developed and evaluated. In this method, (1) alginate was treated with Na2CO3; (2) the alginate-derived compound in the hydrolysate was analyzed using high-performance liquid chromatography (HPLC); and then, (3) one of the HPLC peaks was selected and used to establish the standard calibration curve to estimate the intact alginate content in the raw material. The results obtained using the new method were verified by the Kennedy and Bradshaw method, which confirmed that the new method can be an effective method for the estimation of the alginate content in S. japonica. An experimental equation was developed to estimate the alginic acid concentration in the hydrolysate obtained from Na2CO3 treatment of the model compound (Sigma Na-alginate) at various reaction conditions on the basis of the correlation between estimated alginic acid contents and combined severity factors (CSF). The statistical analysis confirmed that the equation gave consistent results, i.e., approximately 81 % of the test groups lie within <±10 % standard deviation of the mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21:569–574

    Article  CAS  Google Scholar 

  • Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334

    Article  CAS  PubMed  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  CAS  PubMed  Google Scholar 

  • Chum HL, Johnson DK, Black SK, Overend RP (1990) Pretreatment-catalyst effects and the combined severity parameter. Appl Biochem Biotechnol 24–25:1–14

    Google Scholar 

  • Committee on Specifications, Food Chemical Codex of the Committee on Food Protection National Research Council (1972) Food chemicals codex, 2nd edn. National Academy of Sciences, Washington, D.C., 863 p

    Google Scholar 

  • Dubois M, Gillus KA, Hamilton JK, Robers PA, Smith F (1956) Colorimetric method for sugars and related substance. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinary in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sust Energ Rev 14:842–848

    Article  CAS  Google Scholar 

  • Graham HD (1969) Determination of alginate in dairy products. J Dairy Sci 52:445–448

    Article  Google Scholar 

  • Guo G, Chen WH, Chen WH, Men LC, Hwang WS (2008) Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour Technol 99:6046–6053

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  PubMed  Google Scholar 

  • Ueda R, Ogushi Y, Hirano A, Samejima Y, Hon-Nami K, Kunito S (1998) Ethanol production from carbon dioxide by fermentative microalgae. Stud Surf Sci Catal 114:657–660

    Google Scholar 

  • Honya M, Kinoshita T, Ishikawa M, Mori H, Nisizawa K (1993) Monthly determination of alginate, M/G ratio, mannitol, and minerals in cultivated L. japonica. Nippon Suisan Gakkaishi 59:295–299

    Article  CAS  Google Scholar 

  • Horn SJ, Aasen IM, Qstgaard K (2000a) Ethanol production from seaweed extract. J Ind Microbiol Biotechnol 25:249–254

    Article  CAS  Google Scholar 

  • Horn SJ, Aasen IM, Qstgaard K (2000b) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24:51–57

    Article  CAS  Google Scholar 

  • Ishikawa K, Ueyama Y, Mano T, Koyama T, Suzuki K, Matsumura T (1999) Self-setting barrier membrane for guided tissue regeneration method: initial evaluation of alginate membrane made with sodium alginate and calcium chloride aqueous solutions. J Biomed Mater Res 47:111–115

    Article  CAS  PubMed  Google Scholar 

  • Jeong TS, Oh KK (2011) Optimization of fermentable sugar production from rape straw through hydrothermal acid pretreatment. Bioresour Technol 102:9261–9266

    Article  CAS  PubMed  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JF, Bradshaw IJ (1984) A rapid method for the assay of alginates in solution using polyhexamethylenebiguanidinium chloride. Br Polym J 16:95–101

    Article  CAS  Google Scholar 

  • Kloareg B, Quatrano RS (1988) Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr Mar Biol Annu Rev 26:259–315

    Google Scholar 

  • Kulseng B, Skjsk-Braek G, Ryan L, Andersson A, King A, Faxbang A, Espevik T (1999) Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 67:978–984

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102:5884–5890

    Article  CAS  PubMed  Google Scholar 

  • Mattiason B (1983) In the immobilized cells and cellular organelles. CRC Press, Boca Raton, pp 3–35

    Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry. FAO Fisheries Technical Paper 441

  • Meinita MDN, Marhaeni B, Winanto T, Jeong G-T, Khan MNA, Hong Y-K (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J Appl Phycol 25:1957–1961

    Article  CAS  Google Scholar 

  • Overend RP, Chornet E (1987) Fractionation of lignocellulosics by steam/aqueous pretreatments. Phil Trans R Soc Lond A321:523–536

    Article  Google Scholar 

  • Panagiotopoulos IA, Bakker RR, de Vrije T, Koukios EG (2011) Effect of pretreatment severity on the conversion of barley straw to fermentable substrates and the release of inhibitory compounds. Bioresour Technol 102:1120–11211

    Article  Google Scholar 

  • Perez R, Kaas R, Campello F, Arbault S, Barbaroux O (1992) La culture des algues marines dans le monde. IFREMER, Plouzane, p 163

    Google Scholar 

  • Prasad S, Singh A, Jain N, Joshi HC (2007a) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuels 21:2415–2420

    Article  CAS  Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007b) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv 50:1–39

    Article  Google Scholar 

  • Saha BC, Cotta MA (2007) Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol. Enzym Microb Technol 41:528–532

    Article  CAS  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Tanihara M, Ohnishi K, Suzuki K, Endo K, Nishimura Y (1999) Cat peripheral nerve regeneration across 50 mm gap repaired with a novel nerve guide composed of freeze-dried alginate gel. Neurosci Lett 259:75–78

    Article  CAS  PubMed  Google Scholar 

  • Vauchel P, Kaas R, Arhaliass A, Baron R, Legrand J (2008) A new process for extracting alginate from Laminaria digita: reactive extraction. Food Bioproc Technol 1:297–300

    Article  Google Scholar 

  • Vauchel P, Leroux R, Kaas R, Arhaliass A, Baron R, Legrand J (2009) Kinetics modeling of alginate alkaline extraction from Laminaria digitata. Bioresour Technol 100:1291–1296

    Article  CAS  PubMed  Google Scholar 

  • Wagner W (1963) Studien über die Naphthoresorcin-Reaktion von Tollens : Zur Bestimmung von freier Uronsäure neben Uronosiden, Polyuronosiden und neben anderen Kohlenhydraten. Anal Chim Acta 29:227–239

    Article  CAS  Google Scholar 

  • Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100:6658–6660

    Article  CAS  PubMed  Google Scholar 

  • Yeon JH, Lee SE, Choi WY, Kang DH, Lee HY, Jung KH (2011) Repeated-batch operation of surface-aerated fermenter for bioethanol production from the hydrosate of seaweed Sargassum sagamianum. J Microbiol Biotechnol 21:323–331

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Oceans and Fisheries (contract no. 20131039449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyeong Keun Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.H., Choi, W.I., Kim, Y.S. et al. A novel alginate quantification method using high-performance liquid chromatography (HPLC) for pretreatment of Saccharina japonica . J Appl Phycol 27, 511–518 (2015). https://doi.org/10.1007/s10811-014-0298-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0298-2

Keywords

Navigation