Skip to main content
Log in

The effects of severe carbon limitation on the green seaweed, Ulva conglobata (Chlorophyta)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Low inorganic carbon (Ci) concentrations in seawater are usually an important factor controlling photosynthesis and growth of seaweeds. The green seaweed, Ulva conglobata Kjellm, collected from a rock pool in a middle intertidal zone located at Nanao Island, Shantou, China, were cultured under low Ci level for several days, to examine the effect of severe carbon limitation on photosynthesis. The rather high pH compensation points obtained from the pH-drift experiments indicated that U. conglobata was capable of acquiring HCO3 from surrounding seawater as its Ci source for photosynthesis. However, thalli of U. conglobata cultured in Ci-starved seawater exhibited a decline of biomass, showing that the realistic photosynthetic carbon gain could not compensate for the respiratory carbon consumption in the thalli under severe Ci limitation during laboratory culture. Compared with ambient Ci conditions, the culture under severe Ci limitation significantly had an increased pigment content, but a lower maximum quantum yield and photosynthetic electron transport rate. Additionally, the maximum carbon-saturating photosynthesis rate and the apparent photosynthetic conductance of U. conglobata thalli increased in cultures with severe Ci limitation compared with ambient Ci in low N-grown thalli. The results suggest that under severe Ci limitation, U. conglobata thalli increased capacities of both light absorption processes and carbon fixation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andría JR, Vergara JJ, Perez-Llorens JL (1999) Biochemical responses and photosynthetic performance of Gracilaria sp. (Rhodophyta) from Cadiz, Spain, cultured under different inorganic carbon and nitrogen levels. Eur J Phycol 34:497–504

    Article  Google Scholar 

  • Andría JR, Brun FG, Perez-Llorens JL, Vergara JJ (2001) Acclimation responses of Gracilaria sp. (Rhodophyta) and Enteromorpha intestinalis (Chlorophyta) to changes in the external inorganic carbon concentration. Bot Mar 44:361–370

    Article  Google Scholar 

  • Axelsson L, Larsson C, Ryberg H (1999) Affinity, capacity and oxygen sensitivity of the two different mechanisms for bicarbonate utilization in Ulva lactuca L. (Chlorophyta). Plant Cell Environ 22:969–978

    Article  CAS  Google Scholar 

  • Beer S (1994) Mechanisms of inorganic carbon acquisition in marine macroalgae (with special reference to the Chlorophyta). Prog Phycol Res 10:179–207

    CAS  Google Scholar 

  • Beer S, Axelsson L (2004) Limitations in the use of PAM fluorometry for measuring photosynthetic rates of macroalgae at high irradiances. Eur J Phycol 39:1–7

    Article  Google Scholar 

  • Björk M, Haglund K, Ramazanov Z, Pedersen M (1993) Inducible mechanism for HCO3 utilization and repression of photorespiration in protoplasts and thallus of three species of Ulva (Chlorophyta). J Phycol 29:166–173

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Drechsler Z, Sharkia R, Cabantchik ZI, Beer S (1993) Bicarbonate uptake in the marine macroalga Ulva sp. is inhibited by classical probes of anion exchange by red blood cells. Planta 191:34–40

    Article  CAS  Google Scholar 

  • Durchan M, Vacha F, Krieger-Liszkay A (2001) Effects of severe CO2 starvation on the photosynthetic electron transport chain in tobacco plants. Photosynth Res 68:203–213

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, Malden, pp 128–135

    Google Scholar 

  • Gao K, McKinley KR (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  • García-Sânchez MJ, Fernândez JA, Niell FX (1994) Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 194:55–61

    Article  Google Scholar 

  • Gerard VA (1997) The role of nitrogen nutrition in high-temperature tolerance of the kelp Laminaria saccharina (Chromophyta). J Phycol 33:800–810

    Article  CAS  Google Scholar 

  • Gordillo FJL, Niell FX, Figueroa FL (2001) Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 213:64–70

    Article  CAS  PubMed  Google Scholar 

  • Gordillo FJL, Figueroa FL, Niell FX (2003) Photon- and carbon-use efficiency in Ulva rigida at different CO2 and N levels. Planta 218:315–322

    Article  CAS  PubMed  Google Scholar 

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA, Graham MH (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078

    Article  CAS  Google Scholar 

  • Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45:577–607

    Article  CAS  Google Scholar 

  • Jassby AT, Platt T (1976) Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Oceanography 21:540–547

    CAS  Google Scholar 

  • Jensen A (1978) Chlorophylls and carotenoids. In: Hellebust JA, Craigie JS (eds) Handbooks of phycological methods: Physiological and biochemical methods. Cambridge University Press, Cambridge, pp 59–70

    Google Scholar 

  • Johnston AM, Maberly SC, Raven JA (1992) The acquisition of inorganic carbon for four red macroalgae. Oecologia 92:317–326

    Article  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biol 19:103–132

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1997) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Maberly SC (1990) Exogenous sources of inorganic carbon for photosynthesis by marine macroalgae. J Phycol 26:439–449

    Article  CAS  Google Scholar 

  • Magnusson G, Larsson C, Axelsson L (1996) Effects of high CO2 treatment on nitrate and ammonium uptake by Ulva lactuca grown in different nutrient regimes. Sci Mar 60:179–189

    CAS  Google Scholar 

  • Mercado JM, Javier F, Gordillo L, Niell FX, Figueroa FL (1999) Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J Appl Phycol 11:455–461

    Article  Google Scholar 

  • Mercado JM, Carmona R, Niell FX (2000) Affinity for inorganic carbon of Gracilaria tenuistipitata cultured at low and high irradiance. Planta 210:758–764

    Article  CAS  PubMed  Google Scholar 

  • Murru M, Sandgren CD (2004) Habitat matters for inorganic carbon acquisition in 38 species of red macroalgae (Rhodophyta) from Puget Sound, Washington, USA. J Phycol 40:837–845

    Article  CAS  Google Scholar 

  • Rivers JS, Peckol P (1995) Interactive effects of nitrogen and dissolved inorganic carbon on photosynthesis, growth, and ammonium uptake of the macroalgae Cladophora vagabunda and Gracilaria tikvahiae. Mar Biol 121:747–753

    Article  CAS  Google Scholar 

  • Smith RG (1984) Phosphorus versus nitrogen limitation in the marine environment. Limnol Oceanogr 29:1149–1160

    Article  CAS  Google Scholar 

  • Turpin DH (1991) Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J Phycol 27:14–20

    Article  CAS  Google Scholar 

  • Zou DH, Gao KS (2009) Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels. Phycologia 48:510–517

    Article  CAS  Google Scholar 

  • Zou DH, Gao KS (2010) Physiological responses of seaweeds to elevated atmospheric CO2 concentrations. In: Israel A, Einav R, Seckbach J (eds) Seaweeds and their role in globally changing environment. Springer, Dordrecht, pp 115–126

    Chapter  Google Scholar 

  • Zou DH, Gao KS (2013) Thermal acclimation of respiration and photosynthesis in the marine macroalga Gracilaria lemaneiformis (Gigartinales, Rhodophyta). J Phycol 49:61–68

    Article  Google Scholar 

  • Zou DH, Gao KS, Xia JR (2003) Photosynthetic utilization of inorganic carbon in the economic brown alga, Hizikia fusiforme (Sargassaceae) from the South China Sea. J Phycol 36:1095–1100

    Article  Google Scholar 

  • Zou DH, Gao KS, Luo HJ (2011) Short- and long-term effects of elevated CO2 on photosynthesis and respiration in the marine macroalga Hizikia fusiformis (Sargassaceae, Phaeophyta) grown at low and high N supplies. J Phycol 47:87–97

    Article  CAS  Google Scholar 

  • Zou DH, Liu SX, Du H, Xu JT (2012) Growth and photosynthesis in seedlings of Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeophyta) cultured at two different temperatures. J Appl Phycol 24:1321–1327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (41276148 and 41076094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghui Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, D. The effects of severe carbon limitation on the green seaweed, Ulva conglobata (Chlorophyta). J Appl Phycol 26, 2417–2424 (2014). https://doi.org/10.1007/s10811-014-0268-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0268-8

Keywords

Navigation