Skip to main content
Log in

Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Photosynthetic activity (PA) and growth of different microalgae species (Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii) depends in addition to other factors on mixing (tip speed) and shear stress (friction velocity) and was studied in a stirring tank (microcosm). In order to detect cause–effect relationships for an increase in photosynthetic activity, experiments were conducted under different pH values (6.0–8.5) and CO2 concentrations (0.038 and 4 % (v/v)). The PA was determined as the effective quantum yield by pulse amplitude modulation during a stepwise increase of the tip speed from 0 to 589 cm s−1 (friction velocity: 0–6.05 cm s−1) in short-term experiments. The increase caused a distinctive pattern of PA of each species. Compared to 0 cm s−1, C. vulgaris and S. obliquus showed a 4.0 and 4.8 % higher PA at the optimum tip speed of 126 cm s−1 (friction velocity of 2.09 cm s−1) and a 48 and 71 % higher growth, respectively. At 203 cm s−1, the PA dropped to the value of the unstirred control, while at 589 cm s−1, the PA decreased of up to 7 and 8 %. In contrast, C. reinhardtii showed 7 % stronger growth at 126 cm s−1, while the PA decreased about 15 % at an increase of tip speed to 589 cm s−1. For all investigated microalgae, the pattern of PA and higher growth was not only explained by the main contributing factors like light supply, nutrient supply, and overcoming diffusion gradients. The results indicate that hydrodynamic forces have a stimulating effect on the physiological processes within the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. J Biotech 70:313–321

    Article  CAS  Google Scholar 

  • Bronnenmeier R, Märkl H (1982) Hydrodynamic stress capacity of microorganisms. Biotech Bioeng 24:553–578

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotech Prog 22:1490–1506

    PubMed  CAS  Google Scholar 

  • Chisti Y (2001) Hydrodynamic damage to animal cells. Critical Rev Biotechno 21:67–110

    Article  PubMed  CAS  Google Scholar 

  • Contreras A, García F, Molina E, Merchuk JC (1998) Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotech Bioeng 60:317–325

    Article  PubMed  CAS  Google Scholar 

  • Finelli C, Helmuth B, Pentcheff N, Wethey D (2006) Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25:47–57

    Article  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The Relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gudin C, Chaumont D (1991) Cell fragility —the key problem of microalgae mass production in closed photobioreactors. Biores Technol 38:145–151

    Article  Google Scholar 

  • Gust, G. (1989) Method and apparatus to generate precisely-defined wall shearing stresses. US-Patent 4884892

  • Gust G, Müller V (1997) Interfacial hydrodynamics and entrainment functions of currently used erosion devices. In: Burt N, Parker R, Watts J (eds) Cohesive sediments. Wiley, Chichester, pp 149–174

    Google Scholar 

  • Hosaka K, Hioki T, Furuune H, Tanishita K (1995) Augmentation of microalgae growth due to hydrodynamic activation. Eng Convers Manage 36:725–728

    Article  CAS  Google Scholar 

  • Huettel M, Gust G (1992) Solute release mechanism from confined sediment cores in stirred benthic chambers and flume flows. Mar Ecol Prog Se 82:187–197

    Article  Google Scholar 

  • Jaouen P, Vandanjon L, Quéméneur F (1999) The shear stress of microalgal cell suspensions (Tetraselmis suecica) in tangential flow filtration systems: the role of pumps. Biores Technol 68:149–154

    Article  CAS  Google Scholar 

  • Kleeberg A, Hupfer M, Gust G (2007) Phosphorus entrainment due to resuspension in a lowland river, Spree, NE Germany—a laboratory microcosm study. Wat Air Soil Pollut 183:129–142

    Article  CAS  Google Scholar 

  • Koch EW (1994) Hydrodynamics, diffusion-boundary layers and photosynthesis of the sea grasses Thalassia testudinum and Cymodocea nodosa. Mar Biol 118:767–776

    Article  Google Scholar 

  • Kommareddy, A.R. and Anderson, G.A. (2005) Mechanistic modeling of photobioreactor system. Paper number 054167, American Society of Agricultural and Biological Engineers

  • Lippemeier S, Hintze R, Vanselow K, Hartig P, Colijn F (2001) In-line recording of PAM fluorescence of phytoplankton cultures as a new tool for studying effects of fluctuating nutrient supply on photosynthesis. Europ J Phycol 36:89–100

    Article  Google Scholar 

  • Märkl H (1980) Modelling of agal production systems. In: Shelef G, Soeder CJ (eds) Algal Biomass. Elsevier, Amsterdam

    Google Scholar 

  • Merchuk J (1991) Shear effects on suspended cells. In Bioreactor Systems and Effects. pp.65-95: Springer Berlin / Heidelberg

  • Michels MHA, Goot AJ, Norsker NH, Wijffels RH (2010) Effects of shear stress on the microalgae Chaetoceros muelleri. Bioproc Biosyst Eng 33:921–927

    Article  PubMed  CAS  Google Scholar 

  • Mirón AS, García MCC, Gómez AC, Camacho FG, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16:287–297

    Article  Google Scholar 

  • Mitsuhashi S, Hosaka K, Tomonaga E, Muramatsu H, Tanishita K (1995) Effects of shear flow on photosynthesis in a dilute Lsuspension of microalgae. Appl Microbiol Biotechnol 42:744–749

    Article  CAS  Google Scholar 

  • Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-Algal Biotechnology. Cambridge University Press, New York, pp 357–394

    Google Scholar 

  • Panda AK, Mishra S, Bisaria VS, Bhojwani SS (1989) Plant cell reactors—a perspective. Enz Microb Tech 11:386–397

    Article  CAS  Google Scholar 

  • Pasiack WJ, Gavis J (1975) Transport limited nutrient uptake rates in Ditylum brightwellii. Limnology and Oceanography 20:604–617

    Article  Google Scholar 

  • Richmond A (2007) Microalgal culture—biotechnology and applied phycology: Blackwell Publishing

  • Richmond A, Vonshak A (1978) Spirulina culture in Israel. Arch Hydrobiol 11:274–280

    Google Scholar 

  • Sánchez Pérez JA, Rodríguez Porcel EM, Casas López JL, Fernández Sevilla JM, Chisti Y (2006) Shear rate in stirred tank and bubble column bioreactors. Chem Eng J 124:1–5

    Article  Google Scholar 

  • Schlichting J (1968) Boundary layer theory. McGraw-Hill, New York

    Google Scholar 

  • Sobczuk T, Camacho F, Grima E, Chisti Y (2006) Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioproc Biosyst Eng 28:243–250

    Article  PubMed  CAS  Google Scholar 

  • Tennekes, H. and Lumley, J.L. (1972) A first course in turbulence. pp. 55, 197-201. Cambridge, MA: MIT

  • Thomas W, Gibson C (1990) Effects of small-scale turbulence on microalgae. J Appl Phycol 2:71–77

    Article  Google Scholar 

  • Thomsen L, Gust G (2000) Sediment erosion thresholds and characteristics of resuspended aggregates on the western European continental margin. Deep Sea Res 47:1881–1897

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks are dedicated to Mr. Abd El-Fatah Abo-Mohra for helping with A. flos-aquae experiments. The study is based on results obtained during the research project “Development of a prototype of photobioreactor for the outdoor cultivation of microalgae” funded by the Innovationsstiftung Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Leupold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leupold, M., Hindersin, S., Gust, G. et al. Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii . J Appl Phycol 25, 485–495 (2013). https://doi.org/10.1007/s10811-012-9882-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9882-5

Keywords

Navigation