Skip to main content
Log in

Subcellular localization-dependent regulation of the three Spirulina desaturase genes, desC, desA, and desD, under different growth phases

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Spirulina, a well-known cyanobacterium, is a potential alternative source for commercial γ-linolenic acid (C18:3Δ9,12,6, GLA) production. During the Spirulina desaturation process, three enzymes, which are encoded by desC, desA, and desD, respectively, introduce double bonds at the Δ9, Δ12, and Δ6 positions of stearic acid (C18:0), oleic acid (C18:1Δ9), and linoleic acid (C18:2Δ9,12). In the present study, transcriptional and translational expression of the desaturase genes during various growth phases of Spirulina platensis Z19/2 was examined. Moreover, the desaturase levels and fatty acids were analyzed in two subcellular locations, the plasma membrane and thylakoid membrane. The results obtained in this study indicated three important points: (1) the regulation level of each Spirulina desaturase gene is possibly subcellular location dependent; (2) GLA is important during cell division in the mid-log phase; and (3) vaccenic acid (C18:1Δ11), which is detected at high levels during the lag phase in the plasma membrane, might play a role in the mechanical strength of the cell membrane at low growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allakhverdiev S, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96:5862–5867

    Article  PubMed  CAS  Google Scholar 

  • Allen EE, Facciotti D, Bartlett DH (1999) Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl Environ Microbiol 65:1710–1720

    PubMed  CAS  Google Scholar 

  • Cheevadhanarak S, Paithoonrangsarid K, Prommeenate P, Kaewngam W, Musigkain A, Tragoonrung S, Tabata S, Kaneko T, Chaijaruwanich J, Sangsrakru D, Tangphatsornruang S, Chanprasert J, Thongsima S, Kusolmano K, Jeamton W, Dulsawat S, Klanchui A, Vorapreeda T, Chumchua V, Khannapho C, Thammarongtham C, Plengvidhya V, Subudhi S, Hongsthong A, Ruengjitchatchawalya M, Meechai A, Senachak J, Tanticharoen M (2012) Draft genome sequence of Arthrospira platensis C1 (PCC9438). Stand Genomic Sci 6:43–53

    Article  PubMed  CAS  Google Scholar 

  • Chintalapati S, Prakash JSS, Gupta P, Ohtani S, Suzuki I, Sakamoto T, Murata N, Shivaji S (2006) A novel Δ9 acyl-lipid desaturase, DesC2, from cyanobacteria acts on fatty acids esterified to the sn-2 position of glycerolipids. Biochem J 398:207–214

    Article  PubMed  CAS  Google Scholar 

  • Cohen Z (1997) The chemicals of Spirulina. In: Vonshak A (ed) Spirulina (Arthrospira) platensis: physiology, cell-biology and biotechnology. Taylor & Francis, London, pp 175–204

    Google Scholar 

  • Cohen Z, Margheri CM, Tomaselli L (1995) Chemotaxonomy of cyanobacteria. Phytochemistry 40:1155–1158

    Article  CAS  Google Scholar 

  • Cohen Z, Reungjitchachawali M, Siangdung W, Tanticharoen M (1993a) Production and partial purification of γ-linolenic acid and some pigments from Spirulina platensis. J Appl Phycol 5:109–115

    Article  CAS  Google Scholar 

  • Cohen Z, Reungjitchachawali M, Siangdung W, Tanticharoen M, Heimer YM (1993b) Herbicide resistant lines of microalgae: growth and fatty acid composition. Phytochemistry 34:973–978

    Article  CAS  Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1987) Fatty acid composition of Spirulina strains grown under various environmental conditions. Phytochemistry 26:2255–2258

    Article  CAS  Google Scholar 

  • Colla LM, Bertolin TE, Costa JAV (2004) Fatty acids profile of Spirulina platensis grown under different temperatures and nitrogen concentrations. Z Naturforsch 59:55–59

    CAS  Google Scholar 

  • Coolbear KP, Berde CB, Keough KMW (1983) Gel to liquid-crystalline phase transitions of aqueous dispersions of polyunsaturated mixed-acid phosphatidylcholines. Biochemistry 22:1466–1473

    Article  PubMed  CAS  Google Scholar 

  • Cossin AR (1994) Homeoviscous adaptaion of biological membranes and its functional significance. In: Cossin AR (ed) Temperature adaptation of biological membranes. Portland, London, pp 63–76

    Google Scholar 

  • Deshnium P, Paithoonrangsarid K, Suphatrakul A, Meesapyodsuk D, Tanticharoen M, Cheevadhanarak S (2000) Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438). FEMS Microbiol Lett 184:207–213

    Article  PubMed  CAS  Google Scholar 

  • Fay L, Richli U (1991) Location of double bonds in polyunsaturated fatty acids by gas chromatography–mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr 541:89–98

    Article  CAS  Google Scholar 

  • Gombos Z, Kanervo E, Tsvetkova N, Sakamoto T, Aro EM, Murata N (1997) Genetic enhancement of the ability to tolerate photoinhibition by introduction of unsaturated bonds into membrane glycerolipids. Plant Physiol 115:551–559

    PubMed  CAS  Google Scholar 

  • Gombos Z, Wada H, Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc Natl Acad Sci USA 89:9959–9963

    Article  PubMed  CAS  Google Scholar 

  • Gravel P, Golaz O (1996) Protein blotting by the semi-dry method. In: Walker JM (ed) The protein protocols handbook. Humana, New Jersey, pp 249–260

    Chapter  Google Scholar 

  • Hongsthong A, Deshnium P, Paithoonrangsarid K, Cheevadhanarak S, Tanticharoen M (2003) Differential responses of three acyl-lipid desaturases to immediate temperature reduction occurring in two lipid membranes of Spirulina platensis strain C1. J Biosci Bioeng 96:519–524

    Article  PubMed  CAS  Google Scholar 

  • Jeamton W, Mungpakdee S, Sirijuntarut M, Prommeenate P, Cheevadhanarak S, Tanticharoen M, Hongsthong A (2008) A combined stress response analysis of Spirulina platensis in terms of global differentially expressed proteins, and mRNA levels and stability of fatty acid biosynthesis genes. FEMS Microbiol Lett 281:121–131

    Article  PubMed  CAS  Google Scholar 

  • Joset F, Jeanjean R, Hagemann M (1996) Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol Plant 96:738–744

    Article  CAS  Google Scholar 

  • Kis M, Zsiros O, Farkas T, Wada H, Nagy F, Gombos Z (1998) Light-induced expression of fatty acid desaturase genes. Proc Natl Acad Sci USA 95:4209–4214

    Article  PubMed  CAS  Google Scholar 

  • Lapage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 25:1391–1396

    Google Scholar 

  • Los DA, Murata N (1998) Structure and expression of fatty acid desaturases. Biochim Biophys Acta 1934:13–15

    Google Scholar 

  • Lövenklev M, Holst E, Borch E, Rådström P (2004) Relative neurotoxin gene expression in Clostridium botulinum type B, determined using quantitative reverse transcription-PCR. Appl Environ Microbiol 70:2919–2927

    Article  PubMed  Google Scholar 

  • Mary I, Tu C-J, Grossman A, Vaulot D (2004) Effects of high light on transcripts of stress-associated genes for the cyanobacteria Synechocystis sp. PCC 6803 and Prochlorococcus MED4 and MIT9313. Microbiology 150:1271–1281

    Article  PubMed  CAS  Google Scholar 

  • Meechai A, Pongakarakun S, Deshnium P, Cheevadhanarak S, Bhumiratana S (2004) Metabolic flux distribution for γ-linolenic acid synthetic pathways in Spirulina platensis. Biotechnol Bioprocess Eng 9:506–513

    Article  CAS  Google Scholar 

  • Mühling M, Belay A, Whitton BA (2005) Variation in fatty acid composition of Arthrospira (Spirulina) strains. J Appl Phycol 17:137–146

    Article  Google Scholar 

  • Murata N, Omata T (1988) Isolation of cyanobacterial plasma membranes. Methods Enzymol 167:245–251

    Article  CAS  Google Scholar 

  • Murata N, Suzuki I (2006) Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. J Exp Bot 57:235–247

    Article  PubMed  CAS  Google Scholar 

  • Murata N, Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308:1–8

    PubMed  CAS  Google Scholar 

  • Murphy DJ, Harwood JL, Lee KA, Roberto FR, Stumpf PK, St John JB (1985) Differential responses of a range of photosynthetic tissues to a substituted pyridazinone, Sandoz 9785. Specific effects on fatty acid desaturation. Phytochemistry 24:1923–1929

    Article  CAS  Google Scholar 

  • Niehus E, Ye F, Suerbaum S, Josenhans C (2002) Growth phase-dependent and differential transcriptional control of flagellar genes in Helicobacter pylori. Microbiology 148:3827–3837

    PubMed  CAS  Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  PubMed  CAS  Google Scholar 

  • Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328

    Article  Google Scholar 

  • Routaboul J, Fischer SF, Browse J (2000) Trienoic fatty acids are required to maintain chloroplast function at low temperatures. J Plant Physiol 124:1697–1705

    Article  CAS  Google Scholar 

  • Sabersheikh S, Saunders NA (2004) Quantification of virulence-associated gene transcripts in epidemic methicillin resistant Staphylococcus aureus by real-time PCR. Mol Cell Probes 18:23–31

    Article  PubMed  CAS  Google Scholar 

  • Sanangelantoni AM, Calogero RC, Butarelli FR, Gualerzi CO, Tiboni O (1990) Organization and nucleotide sequence of the genes for ribosomal protein S2 and elongation factor Ts in Spirulina platensis. FEMS Microbiol Lett 66:141–146

    Article  CAS  Google Scholar 

  • Shi L, North R, Gennaro ML (2004) Effect of growth state on transcription levels of genes encoding major secreted antigens of Mycobacterium tuberculosis in the mouse lung. Infect Immun 72:2420–2424

    Article  PubMed  CAS  Google Scholar 

  • Shokri A, Sandén A, Larsson G (2002) Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 58:386–392

    Article  PubMed  CAS  Google Scholar 

  • Singh SC, Sinha RP, Häder DP (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  PubMed  CAS  Google Scholar 

  • Stubbs CD, Smith AD (1984) The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta 779:89–137

    Article  PubMed  CAS  Google Scholar 

  • Tanticharoen M, Reungjitchachawali M, Boonag B, Vonktaveesuk P, Vonshak A, Cohen Z (1994) Optimization of γ-linolenic acid (GLA) production in Spirulina platensis. J Appl Phycol 6:295–300

    Article  CAS  Google Scholar 

  • Várkonyi Z, Zsiros O, Farkas T, Garab G, Gombos Z (2000) The tolerance of cyanobacterium Cylindrospermopsis raciborskii to low-temperature photo-inhibition affected by the induction of polyunsaturated fatty acid synthesis. Biochem Soc Trans 28:892–894

    Article  PubMed  Google Scholar 

  • Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23:369–374

    Article  PubMed  CAS  Google Scholar 

  • Vijayan P, Browse J (2002) Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. J Plant Physiol 129:876–885

    Article  CAS  Google Scholar 

  • Vonshak A, Chanawongse L, Bunnag B, Tanticharoen M (1995) Physiological characterization of Spirulina platensis isolates: response to light and salinity. Life Sci Adv Plant Physiol 14:161–166

    Google Scholar 

  • Zhang JY, Yu QT, Liu BN, Huang ZH (1988) Chemical modification in mass spectrometry IV. 2-Alkenyl-4,4-dimethyloxazolines as derivatives for double bond location of long-chain olefinic acids. Biomed Environ Mass Spectrom 15:33–44

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from the National Center for Genetic Engineering and Biotechnology (BIOTEC), Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marasri Ruengjitchatchawalya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Growth of S. platensis strain Z19/2 grown at 35 °C in Zarrouk’s medium under illumination by 100 μmol photons m−2 s−1 fluorescent light. (A) Samples were taken at various growth phases, shown by the solid arrows. (B) In the enlarged image, the solid arrow indicates the sampling point (DOC 102 kb)

Online Resource 2

GC profiles of total fatty acids in (A) plasma membrane, and (B) thylakoid membrane at various growth phases of S. platensis Z19/2 (DOC 3306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mapaisansup, T., Yutthanasirikul, R., Hongsthong, A. et al. Subcellular localization-dependent regulation of the three Spirulina desaturase genes, desC, desA, and desD, under different growth phases. J Appl Phycol 25, 467–475 (2013). https://doi.org/10.1007/s10811-012-9880-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9880-7

Keywords

Navigation