Skip to main content
Log in

Nonliving biomass of marine macrophytes as arsenic(V) biosorbents

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The present study was aimed at assessing the performance of different nonliving macrophytes sampled in the Adriatic coast in arsenic(V) sorption. Full factorial experiments were carried out where the main factors were the macrophyte species (brown algae: Cystoseira, Dictyopteris, and Eisenia; green algae: Caulerpa and Ulva; red algae: Ceramium, Gracilaria, and Porphyra; and seagrass: Zostera), biosorbent washing pre-treatment (deionized water, acid pH 2 and basic pH 10), equilibrium pH (in the range 1 to 8), under relatively high (10 mg L−1) and relatively low (100 μg L−1) arsenic concentration. All species exhibited significant adsorption. Indeed, they showed a good performance, with the highest observed value of about 1.3 ± 0.1 mg g−1 for the red alga Ceramium and the seagrass Zostera, comparable with those of activated carbon and other low-cost adsorbents reported in the literature under similar experimental conditions. Moreover, red algae known in the literature to be bad cationic metal sorbents showed very good arsenic sorption performance. This work shows that the performance of arsenic biosorption depends on many factors: the different composition and structure of outer layer of the macrophytes, arsenic speciation and functional group availability under different pH, and eventual counter-ion interactions with arseniate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145

    Article  Google Scholar 

  • Akhter H, Cartledge FK, Roy A, Tittlebaum ME (1997) Solidification/stabilization of arsenic salts: effects of long cure times. J Hazard Mater 52:247–264

    Article  CAS  Google Scholar 

  • Altundogan HS, Altundogan S, Tumen F, Bildik M (2002) Arsenic adsorption from aqueous solutions by activated red mud. Waste Manage 22:357–363

    Article  CAS  Google Scholar 

  • Azcue JM, Nriagu JO (1995) Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario. J Geochem Explor 52:81–89

    Article  CAS  Google Scholar 

  • Basu A, Kumar S, Mukherjee S (2003) Arsenic reduction from aqueous environment by water lettuce (Pistia stratiotes L.). Indian J Environ Health 45:143–150

    PubMed  CAS  Google Scholar 

  • Beolchini F, Pagnanelli F, De Michelis I, Vegliò F (2006) Micellar enhanced ultrafiltration for arsenic removal: effect of the operating conditions and dynamic modelling. Environ Sci Technol 40:2746–2752

    Article  PubMed  CAS  Google Scholar 

  • Beolchini F, Pagnanelli F, De Michelis I, Vegliò F (2007) Treatment of concentrated arsenic(V) solutions by micellar enhanced ultrafiltration with high molecular weight cut-off membrane. J Hazard Mater 148:116–121

    Article  PubMed  CAS  Google Scholar 

  • Budinova T, Petrov N, Razvigorova M, Parra J, Galiatsatou P (2006) Removal of arsenic(III) from aqueous solution by activated carbons prepared from solvent extracted olive pulp and olive stones. Ind Eng Chem Res 45:1896–1901

    Article  CAS  Google Scholar 

  • Choong TSY, Chuah TG, Robiah Y, Koay FLG, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    Article  CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky VM, Rezanka T (2003) Natural occurrence of arsenic compounds in plant, lichens, fungi, algal species, and microorganisms. Plant Sci 165:1177–1192

    Article  CAS  Google Scholar 

  • ECD (1998) European Commission Directive. Related with drinking water quality intended for human consumption. Brussels, Belgium, 98/83/EC

  • Elson CM, Davies DH, Hayes ER (1980) Removal of arsenic from contaminated drinking water by a chitosan/chitin mixture. Water Res 14:1307–1311

    Article  CAS  Google Scholar 

  • EPA (1998) Environmental Protection Agency, Office of Ground water and drinking water. Implementation guidance for the arsenic rule. Cincinnati, USA, report-816-D-02-005

  • Filho GMA, Andrade LR, Karez CS, Farina M, Pfeiffer WC (1999) Brown algae species as biomonitors of Zn and Cd at Sepetiba Bay, Rio de Janeiro, Brazil. Mar Environ Res 48:213–224

    Article  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    Article  CAS  Google Scholar 

  • Gerloff J, Nizamuddin M (1975) Bemerkungen zur Nomenklatur einiger Arten der Gattung Cystoseira C. Ag. Nova Hedwigia 26:341–348

    Google Scholar 

  • Ghimire KN, Inoue K, Ohto K, Hayashida T (2008) Adsorption study of metal ions onto crosslinked seaweed Laminaria japonica. Bioresour Technol 99:32–37

    Article  PubMed  CAS  Google Scholar 

  • Graham LE, Wilcox LW (2000) Algae. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic(V) with Lessonia nigrescens. Miner Eng 19:486–490

    Article  CAS  Google Scholar 

  • Haque MN, Morrison GM, Perrusquìa G, Gutierrèz M, Aguilera AF, Cano-Aguilera I, Gardea-Torresdey JL (2007) Characteristics of arsenic adsorption to sorghum biomass. J Hazard Mater 145:30–35

    Article  PubMed  CAS  Google Scholar 

  • Hashim MA, Chu KH (2004) Biosorption of cadmium by brown, green, and red seaweeds. Chem Eng J 97:249–255

    Article  CAS  Google Scholar 

  • Jalali R, Ghafourian H, Asef Y, Davarpanah SJ, Sepehr S (2002) Removal and recovery of lead using nonliving biomass of marine algae. J Hazard Mater B92:253–262

    Article  Google Scholar 

  • Kamala CT, Chu KH, Chary NS, Pandey PK, Ramesh SL, Sastry ARK, Chandra Sekhar K (2005) Removal of arsenic(III) from aqueous solutions using fresh and immobilized plant biomass. Water Res 39:2815–2826

    Article  PubMed  CAS  Google Scholar 

  • Kefala MI, Zouboulis AI, Matis KA (2000) Biosorption of cadmium ions by actinomycetes and separation by flotation. Environ Pollut 104:283–293

    Article  Google Scholar 

  • Lee DC, Park JC, Yang JE, Jeong YH, Rhee HI (2000) Screening of hexavalent chromium biosorbent from marine algae. Appl Microbiol Biotechnol 54:445–448

    Article  PubMed  CAS  Google Scholar 

  • Lodeiro P, Cordero B, Barriada JL, Herrero R, Sastre de Vicente ME (2005) Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour Technol 96:1796–1803

    Article  PubMed  CAS  Google Scholar 

  • Mohan D, Pitmann CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  PubMed  CAS  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater B137:464–479

    Article  Google Scholar 

  • Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, New York

    Google Scholar 

  • Murugesan GS, Sathishkumar M, Swaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresour Technol 97:483–487

    Article  PubMed  CAS  Google Scholar 

  • NHMRC (1996) National Health and Medical Research Committee, Australian Drinking Water Guidelines. National Health and Medical Council, Agriculture and Resource Management Council of Australia and New Zealand. Commonwealth of Australia, PF-S93

  • Niu CH, Volesky B, Cleiman D (2007) Biosorption of arsenic(V) with acid-washed crab shells. Water Res 41:2473–2478

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrence of arsenic in ground water. Science 296:2143–2145

    Article  PubMed  CAS  Google Scholar 

  • Pennesi C, Totti C, Romagnoli T, Bianco B, De Michelis I, Beolchini F (2012) Marine macrophytes as effective lead biosorbents. Water Environ Res 84:9–16(8)

    Google Scholar 

  • Puigdomenech I (2009) Program MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms), Department of Inorganic Chemistry, The Royal Institute of Technology: Stockholm, Sweden

  • Sari A, Tüzen M (2009a) Biosorption of As(III) and As(V) from aqueous solution by macrofungus (Inonotus hispidus) biomass: equilibrium and kinetic studies. J Hazard Mater 164:1372–1378

    Article  PubMed  CAS  Google Scholar 

  • Sari A, Tüzen M (2009b) Equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae (Padina pavonica) biomass. J Hazard Mater 171:973–979

    Article  PubMed  CAS  Google Scholar 

  • Sari A, Tüzen M (2010) Biosorption of As(III) and As(V) from aqueous solution by lichen (Xanthoria parietina) biomass. Sep Sci Technol 45:463–471

    Article  CAS  Google Scholar 

  • Sari A, Uluozlü ÖD, Tüzen M (2011) Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Sep Sci Technol 167:155–161

    CAS  Google Scholar 

  • Seki H, Suzuki A (2002) Kinetic study of metal biosorption to a brown alga, Kjellmaniella crassiforia. J Colloid Interface Sci Science 246:259–262

    Article  CAS  Google Scholar 

  • Seki H, Suzuki A, Maruyama H (2005) Biosorption of chromium (VI) and arsenic (V) onto methylated yeast biomass. J Colloid Interf Sci Science 281:261–266

    Article  CAS  Google Scholar 

  • Stirk WA, Van Staden J (2000) Removal of heavy metals from solution using dried brown seaweed material. Bot Mar 43:467–473

    Article  CAS  Google Scholar 

  • Thirunavukkarasu OS, Viraghavan T, Suramanian KS (2003) Arsenic removal from drinking water using iron-oxide coated sand. Water Air Soil Pollut 142:95–111

    Article  CAS  Google Scholar 

  • Tüzen M, Sarı A, Mendil D, Uluozlu OD, Soylak M, Dogan M (2009) Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum. J Hazard Mater 165:566–572

    Article  PubMed  Google Scholar 

  • Vegliò F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  Google Scholar 

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behaviour and distribution. Sci Total Environ 336:701–721

    Article  Google Scholar 

  • Wasiuddin NM, Tango M, Islam MR (2002) A novel method for arsenic removal at low concentrations. Energy Sources 24:1031–1041

    Article  CAS  Google Scholar 

  • WHO (1993) World Health Organization. Guidelines for Drinking-Water Quality, Geneva, p 41

  • Zouboulis AI, Rousou EG, Matis KA, Hancock IC (1999) Removal of toxic metals from aqueous mixtures. Part I biosorption. J Chem Technol Biotechnol 74:429–436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. Barbara Testaferri for her precious contribution in the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Pennesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennesi, C., Vegliò, F., Totti, C. et al. Nonliving biomass of marine macrophytes as arsenic(V) biosorbents. J Appl Phycol 24, 1495–1502 (2012). https://doi.org/10.1007/s10811-012-9808-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9808-2

Keywords

Navigation